下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、13.4 课题学习 最短路径问题一、教学目标1、会用轴对称变换,平移变换确定最短路径,会根据“两点之间,线段最短”进行简单的逻辑推理。2、体会图形类比、转化的思想3、掌握几何变换在实际问题中应用的方法,并积累经验4、体验数学活动的探索性和创造性二、教学重难点重点:用轴对称变换、平移变换解决实际问题中的最短路径问题难点:运用轴对称变换将不共线的多条路径转化到一条直线上三、教学过程1复习引入 一、“将军饮马”背景:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦。有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题. 二、“将军饮马”问题:(如图)将军从图中的 A 地出发,到一条笔直
2、的河边 l 饮马,然后到 B地。怎样选择饮马地点,才能使路程最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题。这个问题后来被称为“将军饮马问题”。问题1这是一个实际问题,能否把它转化为数学问题? 将A,B 两地抽象为两个点,将河l抽象为一条直线 如何在l上找到一个点,使得这个点到点A、点B的距离的和最短?2、探究新知 (1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CACB最短,这时点C是直线l与AB的交点(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只
3、要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CACB最短,这时先作点B关于直线l的对称点B,则点C是直线l与AB的交点为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C,连接AC,BC,BC,证明ACCBACCB.如下:证明:由作图可知,点B和B关于直线l对称,所以直线l是线段BB的垂直平分线因为点C与C在直线l上,所以BCBC,BCBC.在ABC中,ABACBC,所以ACBCACBC,所以ACBCACCB.【例1】 在图中直线l上找到一点M,使它到A,B两点的距离和最小分析:先确定
4、其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点解:如图所示:(1)作点B关于直线l的对称点B;(2)连接AB交直线l于点M.(3)则点M即为所求的点点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.3.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同警误区 利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的
5、三边关系,通过比较来说明最值问题是常用的一种方法解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问3利用平移确定最短路径选址选址问题的关键是把各条线段转化到一条线段上如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题在解决最短路径问题时,我们通
6、常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题 【例2】 如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B两村的水管最短,应建在什么地方?分析:(1)到A,B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB的垂直平分线,与EF的交点即为符合条件的点(2)要使厂部到A村、B村的距离之和最短,可联想到“两点之间线段最短”,作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求解:(1)如图
7、1,取线段AB的中点G,过中点G画AB的垂线,交EF于P,则P到A,B的距离相等也可分别以A、B为圆心,以大于AB为半径画弧,两弧交于两点,过这两点作直线,与EF的交点P即为所求(2)如图2,画出点A关于河岸EF的对称点A,连接AB交EF于P,则P到A,B的距离和最短【例3】 如图,从A地到B地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A地到B地的路程最短?思路导引:从A到B要走的路线是AMNB,如图所示,而MN是定值,于是要使路程最短,只要AMBN最短即可此时两线段应在同一平行方向上,平移MN到AC,从C到B应是余下的路程,连接BC的线段即为最短的,
8、此时不难说明点N即为建桥位置,MN即为所建的桥解:(1)如图2,过点A作AC垂直于河岸,且使AC等于河宽(2)连接BC与河岸的一边交于点N.(3)过点N作河岸的垂线交另一条河岸于点M.则MN为所建的桥的位置4生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AOBOAC的长所以作已知点关于某直线的对称点是解决这类问题的基本方法【例4】 (实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a
9、所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a图b解:如图b.(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿CPQD的路线行走,所走的总路程最短5.运用轴对称解决距离之差最大问题利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最
10、大值破疑点 解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法【例5】 如图所示,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大 分析:此题的突破点是作点A(或B)关于直线l的对称点A(或B),作直线AB(AB)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决解:如图所示,以直线l为对称轴,作点A关于直线l的对称点A,AB的连线交l于点C,则点C即为所求理由:在直线l上任找一点C(异于点C),连接CA,CA,CA,CB.因为点A,A关于直线l对称,所以l为线段AA的垂直平分线,则有CACA,所以CACBCACBAB
11、.又因为点C在l上,所以CACA.在ABC中,CACBCACBAB,所以CACBCACB.点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法6、课堂练习“将军饮马”的妙用:(滨州中考)如图,直角ABC,AB=4, BAC=30 º , BAC的平分线交BC于D。M、N分别是AD,AB上的动点,则BM+MN的最小值是( )。ABCDBNM4430 º7、课后作业 (1)必做题:1.教科书复习题13第15题 2.证明“造桥选址问题”作法的合理性。 (2)选做题选做题:如图,公园内有两条小河,两河形成 的半岛上有一处古迹P,现计划在两条小河上 各修建一座小桥,并在半岛上修三条小路,连通两座小桥与古迹,这两座小桥应建在何处,才能使所修建的道路最短?¡¤P教学后思:在教学中,我发现学生在对问题进行自主探究的过程中,容易想到将河流画成直线,帐蓬画成点,此时教师应再引导学生结合图形用符号语言表述问题,之后,再强调实际问题数学化是解决实际问题的第一步。在深刻理解“线段和最小”这一点上,个别学生有一定的困难,教师可引导学生在直线上任取两点,通过度量比较两组线段和的大小,明确不同的选点,线段和会不同,以帮助学生更直观地感受“线段和最小”。另外,对问题1和问题2的证明是部分学生较困惑
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 父亲的病读后感一百字
- 2024年度游戏软件出版合同3篇
- 安全工程师安全生产法-高处作业时应注意事项试题梳理
- 九年级上学期第一次月考语文题(含答案)
- 金兰教育合作组织高一上学期期中考试语文试题 (含答案)
- 六都中学高二上学期9月考试语文试题(含答案)
- 涉密采购合同范例
- 《利率期货》课件
- 年初加工6000吨地产中药材生产线及冷库项目可行性研究报告模板-立项备案
- 《服务行销策略》课件
- 《水浒传》导读4杨志课件
- 施工升降机维修保养检查记录
- 初中语文人教七年级上册穿井得一人说课稿
- 3.3.1幂函数的概念课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册
- DB44∕T 2041-2017 渡槽安全鉴定规程
- 生药采收加工贮藏和养护
- DB33T 768.14-2018 安全技术防范系统建设技术规范 第14部分:公安监管场所
- DB23∕T 1019-2020 黑龙江省建筑工程资料管理标准
- 教科版小学科学二年级下册科学教案资料
- 大班打击乐《孤独的牧羊人》课件
- 城市更新规划
评论
0/150
提交评论