毕业设计论文:某电机制造厂总降压变电所及高压配电_第1页
毕业设计论文:某电机制造厂总降压变电所及高压配电_第2页
毕业设计论文:某电机制造厂总降压变电所及高压配电_第3页
毕业设计论文:某电机制造厂总降压变电所及高压配电_第4页
毕业设计论文:某电机制造厂总降压变电所及高压配电_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、毕业设计论文:某电机制造厂总降压变电所及高压配电 毕业设计(论文) 题 目 总降压变电所-XXXXXX毕业设计 教学点 专 业 年 级 姓 名 指导教师 定稿日期: 2021 年 6月 1 日 I摘 要为使工厂供电工作很好地为工业生产效劳,切实保证工厂生产和生活用电的需要,并做好节能工作,本设计在大量收集资料,并对原始资料进行分析后,做出35kV变电所及变电系统电气局部的选择和设计,使其到达以下根本要求:1、平安 在电能的供给、分配和使用中,不发生人身事故和设备事故。2、可靠 满足电能用户对供电可靠性的要求。3、优质 满足电能用户对电压和频率等质量的要求4、经济 供电系统的投资少,运行费用低,

2、并尽可能地节约电能和减少有色金属的消耗量。 此外,在供电工作中,又合理地处理局部和全局、当前和长远等关系,既照顾局部的当前的利益,又要有全局观点,顾全大局,适应开展。按照国家标准GB50052-95 ?供配电系统设计标准?、GB50059-92 ?35110kV变电所设计标准?、GB50054-95 ?低压配电设计标准?等的规定,工厂供电设计遵循以下原那么:1、遵守规程、执行政策;遵守国家的有关规定及标准,执行国家的有关方针政策,包括节约能源,节约有色金属等技术经济政策。2、平安可靠、先进合理;做到保障人身和设备的平安,供电可靠,电能质量合格,技术先进和经济合理,采用效率高、能耗低和性能先进电

3、气产品。3、近期为主、考虑开展;根据工作特点、规模和开展规划,正确处理近期建设与远期开展的关系,做到远近结合,适当考虑扩建的可能性。4、全局出发、统筹兼顾。按负荷性质、用电容量、工程特点和地区供电条件等,合理确定设计方案。工厂供电设计是整个工厂设计中的重要组成局部。工厂供电设计的质量直接影响到工厂的生产及开展。 关键词:节能、配电、平安、合理、开展II目 录摘要 ···················

4、83;·················································

5、83;·················································

6、83;·········································· I ABSTRACT ·····

7、83;·················································

8、83;·················································

9、83;····· 错误!未定义书签。 1绪论 ··········································

10、··················································

11、··················································

12、··············· 1 1.1设计题目 ·································&

13、#183;·················································&

14、#183;·················································&

15、#183;· 1 1.2设计依据 ··············································&#

16、183;·················································&#

17、183;······································ 1 1.2.1工厂总平面布置图略 ········&#

18、183;·················································&#

19、183;·············································· 1 1.2.2全厂各车间负荷情况汇总表

20、。 ·················································

21、3;··············································· 1 1.2.3供用电协议。 &

22、#183;·················································&

23、#183;·················································&

24、#183;······················· 2 1.2.4工厂的负荷性质 ·······················

25、83;·················································

26、83;·············································· 3 1.2.5工厂的自然条件 ·

27、;··················································

28、;··················································

29、;··················· 3 1.3设计任务及设计大纲····························&#

30、183;·················································&#

31、183;····································· 3 1.3.1高压供电系统设计·········

32、3;·················································

33、3;·················································

34、3;······· 3 1.3.2总变电所设计 ········································&

35、#183;·················································&

36、#183;································· 3 1.4设计成果 ··············&#

37、183;·················································&#

38、183;·················································&#

39、183;···················· 4 1.4.1设计说明书 ···························

40、··················································

41、··················································

42、· 4 1.4.2设计图纸 ···············································

43、;··················································

44、;··································· 4 2供电电压等级选择 ············

45、3;·················································

46、3;·················································

47、3;··················· 5 2.1电源电压等级选择 ····························&

48、#183;·················································&

49、#183;········································ 5 3全厂负荷计算 ·······&#

50、183;·················································&#

51、183;·················································&#

52、183;································· 5 3.1变电所的负荷计算 ··············

53、;··················································

54、;··················································

55、;····· 5 3.1.1用电设备的负荷计算··········································

56、··················································

57、····················· 5 3.1.2变压器损耗估算 ··························&#

58、183;·················································&#

59、183;··········································· 6 3.1.3无功功率补偿计算···

60、3;·················································

61、3;·················································

62、3;············· 7 3.1.4变压器选择 ··································&#

63、183;·················································&#

64、183;··········································· 8 4系统主接线方案的选择 ····

65、;··················································

66、;··················································

67、;···················· 9 4.1方案1:单回路高压线路变压器组、低压单母线分段主接线 ························&#

68、183;···················· 9 4.2方案2:双回路高压线路变压器组、低压单母线分段主接线 ························

69、;····················· 9 4.3方案的比拟与选择 ··························&#

70、183;·················································&#

71、183;·········································· 9 III5变电所位置及变压器、配电装置选择 ···&#

72、183;·················································&#

73、183;············································ 11 5.1变电所位置 ···&

74、#183;·················································&

75、#183;·················································&

76、#183;························· 11 5.2变压器选择 ······················

77、··················································

78、··················································

79、······· 11 5.3所用变压器选择 ········································

80、83;·················································

81、83;······························ 11 5.3配电装置选择 ·················&

82、#183;·················································&

83、#183;·················································&

84、#183;······· 11 6短路电流计算 ········································&

85、#183;·················································&

86、#183;················································ 12 6.1

87、确定计算电路及计算电抗 ················································

88、··················································

89、········ 12 6.2最大运行方式下的短路点计算 ······································

90、83;·················································

91、83;········· 13 6.3最小运行方式下的短路点计算 ·····································

92、··················································

93、··········· 14 7高压电气设备的选择 ····································

94、83;·················································

95、83;······································· 16 7.1 35KV架空线的选择 ·······&#

96、183;·················································&#

97、183;·················································&#

98、183;····· 16 7.2 10KV母线的选择 ·········································&#

99、183;·················································&#

100、183;························· 16 7.3高压断路器的选择 ·····················

101、3;·················································

102、3;············································· 18 7.4高压隔离开关的选择··

103、··················································

104、··················································

105、············ 19 7.5电流互感器的选择 ···································&#

106、183;·················································&#

107、183;······························· 20 7.6电压互感器的选择 ···············

108、3;·················································

109、3;·················································

110、3;· 22 7.7. 10KV高压柜的选择·············································

111、83;·················································

112、83;··················· 24 8继电保护装置设计 ····························&

113、#183;·················································&

114、#183;·················································&

115、#183;· 25 8.1.继电保护配置 ·············································

116、3;·················································

117、3;····························· 25 8.2主变压器保护的继保整定 ·················

118、83;·················································

119、83;······································ 26 9接地及防雷设计 ·········&#

120、183;·················································&#

121、183;·················································&#

122、183;························· 28 9.1防雷设计 ······················&#

123、183;·················································&#

124、183;·················································&#

125、183;·········· 28 9.2接地设计 ·····································&#

126、183;·················································&#

127、183;············································· 28 致谢 ···&

128、#183;·················································&

129、#183;·················································&

130、#183;··········································· 30 参考文献目录 ····&#

131、183;·················································&#

132、183;·················································&#

133、183;····································· 31 附录1:设备汇总一览表 ·········

134、3;·················································

135、3;·················································

136、3;············ 32 附录2:所区平面布置图 ···································

137、··················································

138、····································· 33IV1绪论1.1设计题目某电机制造厂总降压变电所及高压配电系统设计1.2设计依据1.2.1工厂总平面布置图略1.2.2全厂各车间负荷情况汇总表。11.

139、2.3供用电协议。1当地供电部门可提供两种电源:从某220/35KV区域变电站提供电源,该站距离厂南5公里;从某35/10KV变电所,提供10KV备用电源,该所距离厂南5公里。2配电系统技术数据。1区域变电站35KV母线短路数据为:2配电系统错误!未找到引用源。 3供电部门对工厂提出的技术要求:区域变电站35KV馈电线路定时限过流保护装置的整定时间为1.8秒,要求厂总降压变电所的保护动作时间不大于1.3秒。工厂在总降压变电所35KV侧计量。功率因素值应在0.9以上。1.2.4工厂的负荷性质本工厂大局部车间为一班制,少数车间为两班或三班制,年最大负荷利用小时数为2500小时。锅炉房提供高压蒸汽,

140、停电会使锅炉发生危险。由于距离市区较远,消防用水需要厂方自备。因此,锅炉房要求较高的可靠性。21.2.5工厂的自然条件1年最高气温为40,年最低气温5,年平均气温为10。2站所选地址地质以粘土为主,地下水位3-5米。3风向以东南风为主。 1.3设计任务及设计大纲1.3.1高压供电系统设计根据供电部门提供的资料,选择本厂最优供电电压等级。1.3.2总变电所设计1主结线设计:根据设计任务书,分析原始资料与数据,列出技术上可能实现的多个方案,经过概略分析比拟,留下2-3个较优方案进行详细计算和分析比拟经济计算分析时,设备价格、使用综合投资指标,确定最优方案。2短路电流计算:根据电气设备选择和继电保护

141、的需要,确定短路计算点,计算三相短路电流,计算结果列出汇总表。3主要电气设备选择:主要电气设备的选择,包括断路器、隔离开关、互感器、导线截面和型号、绝缘子等设备的选择及效验。选用设备型号、数量、汇总设备一览表。4主要设备继电保护设计:包括主变压器、线路等元件的保护方式选择和整定计算。5配电装置设计:包括配电装置形式的选择、设备布置图。6防雷、接地设计:包括直击雷保护、进行波保护和接地网设计。 31.4设计成果1.4.1设计说明书包括对各种设计方案分析比拟的扼要说明,并附有必要的计算及表格。1.4.2设计图纸1降压变电所电气主结线图。2变电所平面布置图3主变压器保护原理接线图。42供电电压等级选

142、择2.1电源电压等级选择根据供电协议可知,当地供电部门可提供电源为两种:主电源为厂南的某220/35KV区域变电站提供,10kV备用电源为厂南的某35/10KV变电所提供,因此可以考虑本厂总降压变电所主电源采用35kV电压等级,经过变压后采用10kV输送至各个车间变电房降压至0.4kV直供负荷。同时采用10kV作为保安电源,为锅炉房等一级负荷提供备用电源。3全厂负荷计算3.1变电所的负荷计算 3.1.1用电设备的负荷计算根据设计任务书的要求,按照需要系数法及以下计算公式 错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。 错误!未找到引用源。得各项数据列表如下下表数据均为35kV侧:

143、 53.1.2变压器损耗估算Pb=1%Sj=0.01×10527.37=105.27kw Qb=5%Sj=0.05×10527.37=526.37kvar 63.1.3无功功率补偿计算从设计任务书的要求可知,工厂35kV高压侧进线在最大负荷时,其功率因素不应小于0.9,考虑到变压器的无功功率损耗Qb,远远大于有功功率损耗Pb,因此,在变压器的10kV侧进行无功功率补偿时,其补偿后的功率因素应稍大于0.9,现设cos=0.95,那么10kV侧在补偿前的功率因素为:错误!未找到引用源。 错误!未找到引用源。错误!未找到引用源。 错误!未找到引用源。错误!未找到引用源。因此,所需

144、要的补偿容量为:错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。选取错误!未找到引用源。35kV侧在补偿后的负荷及功率因素计算:错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。 错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。满足了设计任务书的要求,其计算数据如下:7根据设计任务书的要求以及以上计算结果,选取:并联补偿电容为 BWF10.5-100-1型电容器50只。补偿总容量为 100kvar×50=5000kvar。3.1.4变压器选择根据补偿后的总计算负荷8425kVA,同时考虑工厂5-10年的负荷增长

145、,变压器容量考虑一定的预留,本期工厂负荷能保证变压器运行在60-70%经济负荷区内即可,因此选择型号为:SFZ7-10000-35±3*2.5%/10.5kV YN,d11的变压器。 84系统主接线方案的选择 4.1方案1:单回路高压线路变压器组、低压单母线分段主接线 4.2方案2:双回路高压线路变压器组、低压单母线分段主接线 4.3方案的比拟与选择根据设计任务书的要求,本厂根本负荷为一班制,少数负荷为两班或三班制,属于二级负荷;同时锅炉房供电可靠性要求高,属于一级负荷。主接线的设计必须满足工厂电气设备的上述要求,因此:方案1:该方案35kV侧为单回路线路-变压器组接线、10kV单母

146、线,与10kV备用电源通过母联连接,正常运行时母联合闸,由主电源供给锅炉房;当主电源故障或主变等设备停电检修退出运行时,母联分闸,由10kV备用电源直供锅炉房及其他重要负荷。由于本厂根本负荷为二级负荷,对供电可靠性要求不高,采用单回路进线和1台主变根本可满足对二级负荷供电的要求,对于锅炉房等重要负荷采用10kV备用电源作为备用,以保证工厂的重要用电设备不会出现长时间断电,即在任何时候都能满足对二级负荷的供电要求。方案2:该方案35kV侧采用从220/35kV变电站出双回路电源、高压线路变压器组接线、10kV侧为单母线分段接线。方案2的特点就是采用双电源、可靠性高。其缺点就是设备投资大、运行维护

147、费用高,同时本厂最大负荷利用小时仅为2600小时,相对来说,变压器的利用率低,2台主变的空载损耗将大大超过1台主变的选择。选择结果:从上述分析可知,方案1能满足供电要求,同时设备投资、运行维 9护费用和占地面积、建筑费用等方面均由于方案2,技术和经济的综合指标最优,因此,在本设计中,选用方案1作为本设计的主接线方案。方案详细的图纸见?35/10kV降压变电所电气主接线图?。 105变电所位置及变压器、配电装置选择5.1变电所位置根据变电所选址原那么:a.变电所尽量选择在负荷中心,可减少低压损耗;b.便于维修;c.便于进出线;d.节约费用;e.便于运行平安的原那么,将35/10kV总降压变电所设

148、置在木工车间后侧。具体位置见附件3?工厂总平面布置图?。5.2变压器选择根据设计方案的选择结果,本期只设计1台主变压器即可满足需要,因此变压器选择结果不变,即为:额定容量 35:电压等级5.3所用变压器选择为保证变电所正常运行,需要设置所用变压器。根据常规,本所所用变压器可以选择为:SC9-30/10 10±5%/0.4kV Y,y11 阻抗电压4%,布置在10kV柜内。5.3配电装置选择根据供电电压等级选择的结果:进线电源采用35kV,经过变压器降为10kV供给各车间配电所,从经济性和运行维护等方面考虑,35kV配电装置采用户外常规布置,10kV采用户内配电装置。116短路电流计算

149、6.1确定计算电路及计算电抗6.1.1计算电路图 错误!未找到引用源。 错误!未找到引用源。 错误!未找到引用源。 错误!未找到引用源。 错误!未找到引用源。错误!未找到引用源。 设基准容量错误!未找到引用源。基准电压 错误!未找到引用源。 错误!未找到引用源。6.1.2归算前的等值电路图 6.1.3计算电抗将所有电抗归算到35kV侧:系统电抗X1*=Xsmax*=SB/Sdmax=100/580=0.172最大运行方式下X1*=Xsmin*=SB/Sdmin=100/265=0.377最小运行方式下 架空线路电抗 X2*=XL*=XOLSB/VB12=0.4×5×100/

150、372=0.146 12变压器电抗 X3*=XT1*=SS%/100×SB/ST1=(7.5/100) ×(100/10)=0.756.1.4归算后的等值电路图 6.2最大运行方式下的短路点计算6.2.1 d1点的短路电流计算10kV母线侧没有电源,无法向35kV侧提供短路电流,即可略去不计,那么d1点短路电流标幺值为:I d1*错误!未找到引用源。=错误!未找到引用源。=3.145换算到35kV侧0秒钟短路电流有名值I = I d1*×错误!未找到引用源。 =3.145×错误!未找到引用源。 = 4.908kA 根据?电力工程电气设计手册?的相关规定,

151、Kch = 1.8,当不计周期分量的衰减时, 短路电流全电流最大有效值Ich = 错误!未找到引用源。×I =错误!未找到引用源。×4.908=7.41kA当不计周期分量衰减时,短路电流冲击电流ich =2 Kch× I =2 ×1.87×I = 2.55× I = 2.55×4.908= 12.515 kA短路容量 S = 3 UB × I = 3 ×37×4.908 =314.52MVA6.2.2 d2点的短路电流计算10kV母线侧没有电源,无法向35kV侧提供短路电流,即可略去不计,那么d

152、2点短路电流标幺值为:I d1*错误!未找到引用源。=错误!未找到引用源。=0.936换算到10kV侧0秒钟短路电流有名值I = I d1*×错误!未找到引用源。 =0.936×错误!未找到引用源。 =5.15kA根据?电力工程电气设计手册?的相关规定,Kch = 1.8,当不计周期分量的衰减时, 短路电流全电流最大有效值Ich = 错误!未找到引用源。×I =错误!未找到引用源。×5.15=7.78kA当不计周期分量衰减时,短路电流冲击电流ich =2 Kch× I =2 ×1.87×I = 2.55× I =

153、2.55×5.15= 13.133kA13短路容量 S = 3 UB × I = 3 ×10.5×5.15 =93.66MVA 6.3最小运行方式下的短路点计算6.3.1 d1点的短路电流计算同上所得,那么d1点短路电流标幺值为:I d1*错误!未找到引用源。=错误!未找到引用源。=1.912换算到35kV侧0秒钟短路电流有名值I = I d1*×错误!未找到引用源。 =1.912×错误!未找到引用源。 =2.983KA 根据?电力工程电气设计手册?的相关规定,远离发电厂的地点变电所取电流冲击系数Kch = 1.8,当不计周期分量的衰

154、减时,Ich = 错误!未找到引用源。×I =错误!未找到引用源。×2.983=4.505kA当不计周期分量衰减时,短路电流冲击电流ich =2 Kch× I =2 ×1.87×I = 2.55× I = 2.55×2.983= 7.61kA短路容量 S = 3 UB × I = 3 ×37×2.983=191.16MVA6.2.2 d2点的短路电流计算10kV母线侧没有电源,无法向35kV侧提供短路电流,即可略去不计,那么d2点短路电流标幺值为:I d1*错误!未找到引用源。=错误!未找到引用

155、源。=0.785换算到10kV侧0秒钟短路电流有名值I = I d1*×错误!未找到引用源。 =0.785×错误!未找到引用源。 =4.317KA 根据?电力工程电气设计手册?的相关规定,Kch = 1.8,当不计周期分量的衰减时, 短路电流全电流最大有效值Ich = 错误!未找到引用源。×I =错误!未找到引用源。×4.317=6.519kA当不计周期分量衰减时,短路电流冲击电流ich =2 Kch× I =2 ×1.87×I = 2.55× I = 2.55×4.317= 11.008kA短路容量 S

156、 = 3 UB × I = 3 ×10.5×4.317=78.51MVA以上计算结果列表如下:14 157高压电气设备的选择7.1 35kV架空线的选择考虑到变压器在电压降低5%时其出力保持不变,所以35kV架空线相应的Igmax=1.05Ie即:Igmax =1.05 ×错误!未找到引用源。=1.05 ×错误!未找到引用源。=0.173kA 根据设计条件 Tmax=2500h 取J=1.3那么导体经济截面面积 S=Igmax/J=173/1.3=133.08mm2。7.1.1选择导线按照经济电流密度:选择LGJ-150/20钢芯铝绞线,其室外载流量为Ij1=306A,面积为S=145.68mm2,导线最高允许温度为70,根据工作环境温度为30,查综合修正系数K=0.94, 306=287.64AIgmax,满足电流的要求。7.1.2热稳定校验按最大运行方式d2点短路:根据设计任务书的条件,变电所的继保动作时限不能大于1.3秒,即top=1.3s,断路器开短时间tos=0.2s,非周

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论