t检验F检验及公式_第1页
t检验F检验及公式_第2页
t检验F检验及公式_第3页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、T检验F检验及公式(一)t检验当总体呈正态分布,如果总体标准差未知,而且样本容量n30,那么这时一切可能的样本平均数与总体平均数的离差统计量呈t分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显着。t检验分为单总体t检验和双总体t检验。1.单总体t检验单总体t检验是检验一个样本平均数与一已知的总体平均数的差异是否显着。当总体分布是正态分布,如总体标准差未知且样本容量n30)也可写成:tXn在这里,t为样本平均数与总体平均数的离差统计量;X为样本平均数;为总体平均数;X为样本标准差;n为样本容量。例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,

2、期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。问二年级学生的英语成绩是否有显着性进步?检验步骤如下:第一步建立原假设光:=73第二步计算t值第三步判断因为,以0.05为显着性水平,dfn119,查t值表,临界值t(19)0.052.093,而样本离差的t1.63小与临界值2.093。所以,接受原假设,即进步不显着。2.双总体t检验双总体t检验是检验两个样本平均数与其各自所代表的总体的差异是否显着。双总体t检验乂分为两种情况,一是相关样本平均数差异的显着性检验,用丁检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。二是独

3、立样本平均数的显着性检验。各实验处理组之间星无相关存在,即为独立样本。该检验用丁检验两组非相关样本被试所获得的数据的差异性。现以相关检验为例,说明检验方法。因为独立样本平均数差异的显着性检验完全类似,只不过r0。相关样本的t检验公式为:XiX2222XiX22XiX2n1在这里,Xi,X2分别为两样本平均数;X,入1X2分别为两样本方差;为相关样本的相关系数。例:在小学三年级学生中随机抽取10名学生,在学期初和学期末分别进行了两次推理能力测验,成绩分别为79.5和72分,标准差分别为9.124,9.940。问两次测验成绩是否有显着地差异?检验步骤为:第一步建立原假设H。:1=2第二步计算t值=

4、79.5719.12429.940220.7049.1249.940101=3.459。第三步判断根据自由度dfn19,查t值表t(9)0.052.262,t(9).13.250。由丁实际计算出来的t|=3.4953.250=t(9)0.01,则P0.01,故拒绝原假设。结论为:两次测验成绩有及其显着地差异。由以上可以看出,对平均数差异显着性检验比较复杂,究竟使用Z检验还是使用t检验必须根据具体情况而定,为了便丁掌握各种情况下的Z检验或t检验,我们用以下一览表图示加以说明。厂已知时,用Z-单总体未知时,用t(dfn1)S双总体在这里,S表示总体标准差的估计量,它与样本标准差X的关系是:2未知元

5、X22212.J.n1n22已知且是独立样本时,用X;X222X1X2n2是独立大样本时,用Z是独立小样本时,用tX1X2,八2,(ni1)Si(n2n1n221)s2(11)n1n2是相关样本时,用tX1X22一2一一ss2rSSn以上对平均数差异的显着性检验的理论前提是假设两个总体的方差是相同的,至少没体的方差是否有显着性差异所进行的检验称为方差齐性检验,即有显着性差异。对两个总必须进行F检验。(二)F检验F检验法是英国统计学家Fisher提出的,主要通过比较两组数据的方差S2,以确定他们的精密度是否有显着性差异。至丁两组数据之间是否存在系统误差,则在进行F检验并确定它们的精密度没有显着性差异之后,再进行t检验。F检验乂叫方差齐性检验。从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t检验或变量变换或秩和检验等方法。其中要判断两总体方差是否相等,就可以用F检验。简单的说就是检验两个样本的方差是否有显着性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。F检验公式如下:S12F=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论