bp神经网络详细步骤C#实现_第1页
bp神经网络详细步骤C#实现_第2页
bp神经网络详细步骤C#实现_第3页
bp神经网络详细步骤C#实现_第4页
bp神经网络详细步骤C#实现_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、using System;using System.Collections.Generic;using System.Linq;using System.Text;using System;using System.IO;using System.Text;namespace BpANNet/ <summary>/ BpNet 的摘要说明。/ </summary>public class BpNetpublic int inNum;/输入节点数int hideNum;/隐层节点数public int outNum;/输出层节点数public int sampleNum;

2、/样本总数Random R;double x;/输入节点的输入数据double x1;/隐层节点的输出double x2;/输出节点的输出double o1;/隐层的输入double o2;/输出层的输入public double , w;/权值矩阵w,这是输入层与隐藏层之间的权值矩阵public double , v;/权值矩阵V,这是隐藏层与输出层之间的权值矩阵public double , dw;/权值矩阵wpublic double , dv;/权值矩阵Vpublic double rate;/学习率public double b1;/隐层阈值矩阵public double b2;/输

3、出层阈值矩阵public double db1;/隐层阈值矩阵public double db2;/输出层阈值矩阵double pp;/隐藏层的误差double qq;/输出层的误差double yd;/输出层的教师数据,所谓教师数据就是实际数据而已!public double e;/均方误差double in_rate;/归一化比例系数/用于确定隐藏层的神经细胞数public int computeHideNum(int m,int n)double s=Math.Sqrt(0.43*m*n+0.12*n*n+2.54*m+0.77*n+0.35)+0.51;int ss=Convert.T

4、oInt32(s);return (s-(double)ss)>0.5) ? ss+1:ss;public BpNet(double , p,double , t)/ 构造函数逻辑R=new Random();this.inNum=p.GetLength(1);this.outNum=t.GetLength(1);this.hideNum=computeHideNum(inNum,outNum);/this.hideNum=18;this.sampleNum=p.GetLength(0);Console.WriteLine("输入节点数目: "+inNum);Cons

5、ole.WriteLine("隐层节点数目:"+hideNum);Console.WriteLine("输出层节点数目:"+outNum);Console.ReadLine();/将这些矩阵规定好矩阵大小x=new doubleinNum;x1=new doublehideNum;x2=new doubleoutNum;o1=new doublehideNum;o2=new doubleoutNum;w = new doubleinNum, hideNum;/权值矩阵w,这是输入层与隐藏层之间的权值矩阵v=new doublehideNum,outNum

6、;dw=new doubleinNum,hideNum;dv=new doublehideNum,outNum;/阈值b1=new doublehideNum;b2=new doubleoutNum;db1=new doublehideNum;db2=new doubleoutNum;/误差pp = new doublehideNum;/隐藏层的误差qq = new doubleoutNum;/输出层的误差yd = new doubleoutNum;/输出层的教师数据/初始化wfor(int i=0;i<inNum;i+)for(int j=0;j<hideNum;j+)/Next

7、Double返回一个介于 0.0 和 1.0 之间的随机数。wi,j=(R.NextDouble()*2-1.0)/2;/初始化vfor(int i=0;i<hideNum;i+)for(int j=0;j<outNum;j+)vi,j=(R.NextDouble()*2-1.0)/2;rate=0.8;e=0.0;in_rate=1.0; /训练函数public void train(double , p,double , t)e=0.0;/求p,t中的最大值double pMax=0.0;/sampleNum为样本总数for(int isamp=0;isamp<

8、sampleNum;isamp+)/inNum是输入层的节点数(即神经细胞数)for(int i=0;i<inNum;i+)if(Math.Abs(pisamp,i)>pMax)pMax=Math.Abs(pisamp,i);for(int j=0;j<outNum;j+)if(Math.Abs(tisamp,j)>pMax)pMax=Math.Abs(tisamp,j);in_rate=pMax;/end isampfor(int isamp=0;isamp<sampleNum;isamp+)/数据归一化for(int i=0;i<inNum;i+)xi=

9、pisamp,i/in_rate;for(int i=0;i<outNum;i+)ydi=tisamp,i/in_rate;/计算隐层的输入和输出for(int j=0;j<hideNum;j+)o1j=0.0;for(int i=0;i<inNum;i+)o1j+=wi,j*xi;/“权值”*“输入”的那个累加的过程/这个b1j就是隐藏层的阈值,阈值就是一个输入为“-1”的累加值x1j=1.0/(1.0+Math.Exp(-o1j-b1j);/计算输出层的输入和输出for(int k=0;k<outNum;k+)o2k=0.0;for(int j=0;j<hid

10、eNum;j+)o2k+=vj,k*x1j;x2k=1.0/(1.0+Math.Exp(-o2k-b2k);/计算输出层误差和均方差for(int k=0;k<outNum;k+)/ydk是输出层的教师数据,所谓教师数据就是实际应该输出的数据而已qqk=(ydk-x2k)*x2k*(1.0-x2k);e+=(ydk-x2k)*(ydk-x2k);/更新V,V矩阵是隐藏层与输出层之间的权值for(int j=0;j<hideNum;j+)vj,k+=rate*qqk*x1j;/计算隐层误差for(int j=0;j<hideNum;j+)/PP矩阵是隐藏层的误差ppj=0.0;

11、/算法参考我的视频截图for(int k=0;k<outNum;k+)ppj+=qqk*vj,k;ppj=ppj*x1j*(1-x1j);/更新Wfor(int i=0;i<inNum;i+)wi,j+=rate*ppj*xi;/更新b2,输出层的阈值for(int k=0;k<outNum;k+)b2k+=rate*qqk;/更新b1,隐藏层的阈值for(int j=0;j<hideNum;j+)b1j+=rate*ppj;/end isampe=Math.Sqrt(e);/均方差/ adjustWV(w,dw);/ adjustWV(v,dv);/end train

12、public void adjustWV(double , w,double, dw)for(int i=0;i<w.GetLength(0);i+)for(int j=0;j<w.GetLength(1);j+)wi,j+=dwi,j;public void adjustWV(double w,double dw)for(int i=0;i<w.Length;i+)wi+=dwi;/数据仿真函数public double sim(double psim)for(int i=0;i<inNum;i+)xi= psimi/in_rate;/in_rate为归一化系数for

13、(int j=0;j<hideNum;j+)o1j=0.0;for(int i=0;i<inNum;i+)o1j=o1j+wi,j*xi;x1j=1.0/(1.0+Math.Exp(-o1j-b1j);for(int k=0;k<outNum;k+)o2k=0.0;for(int j=0;j<hideNum;j+)o2k=o2k+vj,k*x1j;x2k=1.0/(1.0+Math.Exp(-o2k-b2k);x2k=in_rate*x2k; return x2; /end sim/保存矩阵w,vpublic void saveMatrix(double ,

14、w,string filename)StreamWriter sw=File.CreateText(filename);for(int i=0;i<w.GetLength(0);i+)for(int j=0;j<w.GetLength(1);j+)sw.Write(wi,j+" ");sw.WriteLine();sw.Close();/保存矩阵b1,b2public void saveMatrix(double b,string filename)StreamWriter sw=File.CreateText(filename);for(int i=0;i&l

15、t;b.Length;i+)sw.Write(bi+" ");sw.Close();/读取矩阵W,Vpublic void readMatrixW(double , w,string filename)StreamReader sr;try sr = new StreamReader(filename,Encoding.GetEncoding("gb2312"); String line;int i=0;while (line = sr.ReadLine() != null) string s1=line.Trim().Sp

16、lit(' ');for(int j=0;j<s1.Length;j+)wi,j=Convert.ToDouble(s1j);i+;sr.Close();catch (Exception e) / Let the user know what went wrong.Console.WriteLine("The file could not be read:");Console.WriteLine(e.Message);/读取矩阵b1,b2public void readMatrixB(double b,string filename)Stre

17、amReader sr;try  sr = new StreamReader(filename,Encoding.GetEncoding("gb2312"); String line;int i=0; while (line = sr.ReadLine() != null) bi=Convert.ToDouble(line);i+;sr.Close();catch (Exception e) / Let the user know what went wrong.Console.WriteLine("Th

18、e file could not be read:");Console.WriteLine(e.Message); /end bpnet /end namespace/主调用程序namespace BpANNet/ <summary>/ Class1 的摘要说明。/ </summary>class Class1/ <summary>/ 应用程序的主入口点。/ </summary>STAThreadstatic void Main(string args)/0.1399,0.1467,0.1567,0.1595,0.1588,0

19、.1622,0.1611,0.1615,0.1685,0.1789,0.1790/ double , p1=new double,0.05,0.02,0.09,0.11,0.12,0.20,0.15,0.22,0.20,0.25,0.75,0.75,0.80,0.83,0.82,0.80,0.90,0.89,0.95,0.89,0.09,0.04,0.1,0.1,0.14,0.21,0.18,0.24,0.22,0.28,0.77,0.78,0.79,0.81,0.84,0.82,0.94,0.93,0.98,0.99;/ double , t1=new double,1,0,1,0,1,0,

20、1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1;/p1是输入的信息,一共5组,输入层为六个节点,p156double , p1=new double,0.1399,0.1467,0.1567,0.1595,0.1588,0.1622,0.1467,0.1567,0.1595,0.1588,0.1622,0.1611,0.1567,0.1595,0.1588,0.1622,0.1611,0.1615,0.1595,0.1588,0.1622,0.1611,0.1615,0.1685,0.1588,0.1622

21、,0.1611,0.1615,0.1685,0.1789;/t1是输出信息,一共6组,t161double , t1=new double,0.1622,0.1611,0.1615,0.1685,0.1789,0.1790;BpNet bp=new BpNet(p1,t1);int study=0;dostudy+;bp.train(p1,t1);/ bp.rate=0.95-(0.95-0.3)*study/50000;/ Console.Write("第 "+ study+"次学习: ");/ Console.WriteLine(" 均方差为 "+bp.e);while(bp.e>0.001 && study <50000);Console.Write("第 "+ study+"次学习: ");Console.WriteLine(" 均方差为 "+bp.e);bp.saveMatrix(bp.w,"w.txt&q

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论