错位相减法数列求和法_第1页
错位相减法数列求和法_第2页
错位相减法数列求和法_第3页
错位相减法数列求和法_第4页
错位相减法数列求和法_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、特定数列求和法错位相减法在高中所学的数列求合的方法有很多,比如倒序相加法、公式法、数学归纳法、裂项相消法、错位相减法等等,在此处我们就只着重讲解一种特定数列求和的方法错位相减法。那到底什么是错位相减法呢?现在咱们来回忆当初学习等比数列时老师是怎么一步步推导出等比数列的求和公式的,下面是推导过程:数列是由第一项为,且公比为的等比数列,它的前项和是 ,求 的通项公式。 解 由已知有 , 两端同乘以,有 -得 当时,由可得 当时,由可得 于是 或者 通过上述推导过程老师运用了一种特殊的推导方法将本来很复杂的运算简化了,从而得到等比数列的求和公式,这种方法叫错位相减法,那我们是不是遇到复杂的运算就都可

2、以用这种方法呢?答案当然不是,我们仔细观察这推导过程,就会发现其实错位相减法是用来计算一个等比数列乘以一个等差数列而成的复杂数列的。可以归纳数学模型如下:已知数列是以为首项,为公差的等差数列,数列是以为首项,为公比的等比数列,数列,求数列的前项和.解 由已知可知 两端同乘以可得 = 由-得化简得 许许多多的高考试题以及课后习题证明了不是所有的数列题目都会很直接地写明所求数列是一个等比数列乘以一个等差数列的形式,通过对最近几年高考中的数列题的分析总结出了以下几种错位相减法求和类型: 所求数列中的等差数列是已知这第一种类型的题顾名思义是所求的复杂数列中直接给出其中一个是等差数列,则只要证明或者求出

3、另一个是等比数列,那么就可以用错位相减法来求解该题,同时如果另一个不能被证明是等比数列就不能用错位相减法来求解,得另找他法了.例1.(2013湖南文)设为数列的前项和,已知:.(1)求,并求数列的通项公式(2)求数列的前项和.分析:在本题中第二问要求的是数列的前项和,其中的an我们不能直接知道是什么数列,可以由做题经验看出是公差为1的等差数列,所以在本题中要先求出,证明是等比数列以后,则才可以用错位相减法求解.解 (1)令得 因为 所以 令,得 ,当时,由 , ,两式相减得 ,即 .故数列是由首项为1,公比为2的等比数列,所以数列的通项公式为.(2)由(1)知,.记数列的前项和为.于是 , ,

4、 -得 .例2(2010新课标卷理)设数列满足.(1) 求数列的通项公式;(2) 令,求数列的前n项和解 (1)由已知,当时,所以数列的通项公式为.(2)由知 , 从而 , -得 ,即 .评析:在上述两个例题中的第一问中都是先求出了是等比数列,所以此时的就是一个等比数列乘以一个等差数列而成的复杂数列,符合模型要求,最后才可以用错位相减法快速地求出的前项和.所求数列中的等比数列是已知这种类型的题与第一种类型题相反,就是在所求的复杂数列中直接写明其中一个是等比数列,只要求出或者证明另一个是等差数列,则我们就可以用错位相减法来求解该题,如果另一个不是等差数列则我们就不能用错位相减法来求解,下面我们又

5、来看看这类题型的应用。例3.(2013辽宁理17)已知等差数列满足,.(1)求数列的通项公式;(2)求数列的前项和.分析:在本题中最终要求的是数列的前项和,其中的不能直接知道是什么数列,要通过已知求解,我们可以由做题经验看出是以公比为的等比数列,故在本题中我们要先求出,证明它是等差数列以后,则才可以用错位相减法求出数列的前项和.解(1)设等差数列的公差为,从已知条件可知道:, 解得故数列的通项公式为(2)设数列的前项和为,即 故,所以当时, -有: ,又 所以故 .例4.(2012江西理16)已知数列an的前n项和为Snn2kn(kN*),并且Sn的最大值为8.(1)确定常数k,并求an;(2

6、)求数列的前n项和Tn.分析:在本题第二问中要求的是数列的前项和,其中的不能直接知道是什么数列,要通过已知求解,可以由数学经验看出是公比为的等比数列,所以在本题中要先求出,证明它是等差数列后,才可以用错位相减法求出数列的前n项和。解(1)根据题目可知,当nkN*时,Snn2kn取得最大值,即8Skk2k2k2,故 k216(kN),因此k4,从而 anSnSn1n(n2)又a1S1, 所以ann.(等差数列)(2) 设 ,将an 代入得 Tnb1b2bn,所以Tn2TnTn.评析:在上述两题中的第一题中先证明了是等差数列,所以此时的就是一个等差数列与一个等比数列的乘积形式,符合模型要求;第二题

7、中,先在第一问求出了的公式,再根据这个公式求出了是等差数列,所以此时的也是一个等差数列与一个等比数列的乘积形式,符合模型要求,最后我们在这两个题中才借用错位相减法来快速地求出所求数列的前项和.所求数列中的等比数列和等差数列都未知求解这种类型的题的难度就比较大了,因为在所求的复杂数列中不能直接明显地看出它其中包含的等差数列和等比数列,则需要根据题目已知来找出或者证明所求数列是一个等差数列与一个等比数列的乘积,这样才能依据错位相减法来计算结果。例5. (2013山东.理) 设等差数列的前项和为,且 (1) 求数列的通项公式; (2) 设数列的前项和,且为常数),令.求

8、数列的前项和. 分析:本题中要求的是数列的前项和,其中不能直接知道是什么数列,在第二问中又知道和有关系,所以在本题的第一问中我们要先求出,再在第二问中将求出,最后当满足错位相减法的条件后我们就可以用错位相减法来求解了. 解:(1)由为等差数列,可得 所以 (2)由 得 当时, , -可得 ,所以当时, , , -得 , 当时, ,即 .例6.(2009上海青浦区)设数列的前和为,已知,一般地,()(1)求;(2)求;(3)求和:分析:本题中要求的是的和,虽然不能直接看出它是数列,但可以抱着这样的心态来看看,通过第二问中的来求出那一串的和,也许可以转化为一个等差数列与一个等比数列的乘积形式,那么就可以用错位相减法来求和了.解 (1)略;(2)当时,(),所以 () (3) 与(2)同理可求得:,设 =,两式相减得 ,所以 评析:在上述两题中,都不能直接知道所求的是什么形式的数列,所以只能从题目中找出相关条件,将所求的结论转化成一个等差数列与一个等比数列的乘积形式,使之符合模型要求,这样才能在这两个题中借用错位相减法来快速地求出所求结果。总 结数列求和不仅在高中数学中有着十分重要的作用,也是学习高等代数的基础,有着承前启后的作用,本文通过对一般形式下错位相减法的运算再现,使我们体会错位相减法的内在规律,感受数学解题思

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论