函数的奇偶性重难点突破的预设方案_第1页
函数的奇偶性重难点突破的预设方案_第2页
函数的奇偶性重难点突破的预设方案_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、§1.3.2函数的奇偶性教学目标:(1)理解函数的奇偶性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)学会判断函数的奇偶性教学重点:函数的奇偶性及其几何意义教学难点:判断函数的奇偶性的方法与格式教学过程:一:引入课题(画图让学生巩固对二次函数和分段函数的画法)2 问题:(1) 这两个函数图象有什么共同特征吗?(2) 相应的两个函数值对应表是如何体现这些特征的?答案:(1)图像都关于y轴对称;(2)自变量x取一对相反数是,相应的两个函数值相同.实际上,对于R内任意的一个x ,都有 , 这时我们称函数 为偶函数. 二:探究新课1. 偶函数的定义一般地,如果对于函数的定义

2、域内任意一个,都有,那么f(x)就叫做偶函数注意:偶函数的图象关于y轴对称. 反过来,如果一个函数的图象关于y轴对称,那么就称这个函数为偶函数.2. 给出函数 的图像,让生观察这两个图象,发现两个函数图象的共同特征。共同特征:图像都关于y轴对称,且自变量取一对相反数是,相应的两个函数值也是一对相反数。3. 奇函数的定义一般地,如果对于函数的定义域内的任意一个,都有,那么就叫做奇函数注意:(1)、由函数的奇偶性定义可知,对于定义域内的任意一个,则x也一定是定义域内的一个自变量(即定义域关于原点对称)()、奇函数的图象关于原点对称.反过来,如果一个函数的图象关于原点对称,那么就称这个函数为奇函数.

3、三:应用示例例、判断下列函数的奇偶性:活动:学生思考奇偶函数的定义,利用定义来判断其奇偶性,先求函数定义域,并判断定义域是否关于原点对称,如果定义域关于原点对称,那么再判断或.答案: (1) 偶函数; (2)既不是奇函数也不是偶函数 (3)奇函数; (4)奇函数 (5)既是奇函数又是偶函数点评:1 用定义判断函数奇偶性的步骤是(1)、先求定义域,看是否关于原点对称;(2)、再判断 或 是否恒成立;(3)、作出相应结论.2 函数按是否有奇偶性可分为四类:奇函数; 偶函数; 既是奇函数又是偶函数; 既不是奇函数又不是偶函数.3 奇偶函数图象的性质(1)、奇函数的图象关于原点对称.反过来,如果一个函数的图象关于原点对称,那么就称这个函数为奇函数.2、偶函数的图象关于y轴对称.反过来,如果一个函数的图象关于y轴对称,那么就称这个函数为偶函数.练习:教材P35页的思考题(2)(利用函数的奇偶性补全函数的图象)规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称说明:这也可以作为判断函数奇偶性的依据 四: 课堂小结1、两个定义:对于f(x)定义域内的任意一个x, 如果都有 为奇函数 如果都有 为偶函数2、两个性质: 一个函数为奇函数 它的图象关于原点对称 一个函数为偶函数 它的图象关于y轴对称3、用定义判断函数奇偶性的步骤是(1)、先求定义

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论