版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题共5小题,每题6分,共30分.1甲如果实数a,b,c在数轴上的位置如下图,那么代数式可以化简为 A B C Da1乙如果,那么的值为 A B C2 D2甲如果正比例函数y = axa 0与反比例函数y =b 0 的图象有两个交点,其中一个交点的坐标为3,2,那么另一个交点的坐标为 A2,3 B3,2 C2,3 D3,22乙 在平面直角坐标系中,满足不等式x2y22x2y的整数点坐标x,y的个数为 A10 B9 C7 D53甲如果为给定的实数,且,那么这四个数据的平均数与中位数之差的绝对值是 A1 B C D3乙如图,四边形ABCD
2、中,AC,BD是对角线,ABC是等边三角形,AD = 3,BD = 5,那么CD的长为 A B4 C D4.54甲小倩和小玲每人都有假设干面值为整数元的人民币小倩对小玲说:“你假设给我2元,我的钱数将是你的n倍;小玲对小倩说:“你假设给我n元,我的钱数将是你的2倍,其中n为正整数,那么n的可能值的个数是 A1 B2 C3 D44乙如果关于x的方程 是正整数的正根小于3, 那么这样的方程的个数是 A 5 B 6 C 7 D 85甲一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为,那么中最大的是 A
3、 B C D5乙黑板上写有共100个数字每次操作先从黑板上的数中选取2个数,然后删去,并在黑板上写上数,那么经过99次操作后,黑板上剩下的数是 A2021 B101 C100 D99二、填空题共5小题,每题6分,共30分6甲按如图的程序进行操作,规定:程序运行从“输入一个值x到“结果是否>487?为一次操作. 如果操作进行四次才停止,那么x的取值范围是 .6乙.如果a,b,c是正数,且满足,那么的值为 7甲如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,那么DMN的面积是 .7乙.如下图,点A在半径为20的圆O上,以OA为一条对角线作矩形O
4、BAC,设直线BC交圆O于D、E两点,假设,那么线段CE、BD的长度差是 。8甲. 如果关于x的方程x2+kx+k23k+= 0的两个实数根分别为,那么 的值为 8乙设为整数,且1n2021. 假设能被5整除,那么所有的个数为 .9甲. 2位八年级同学和m位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场记分规那么是:每场比赛胜者得3分,负者得0分;平局各得1分. 比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,那么m的值为 .9乙如果正数x,y,z可以是一个三角形的三边长,那么称是三角形数假设和均为三角形数,且abc,那么的取值范围是 .10甲
5、如图,四边形ABCD内接于O,AB是直径,AD = DC. 分别延长BA,CD,交点为E. 作BFEC,并与EC的延长线交于点F. 假设AE = AO,BC = 6,那么CF的长为 .10乙是偶数,且1100假设有唯一的正整数对使得成立,那么这样的的个数为 三、解答题共4题,每题15分,共60分11甲二次函数,当时,恒有;关于x的方程的两个实数根的倒数和小于求的取值范围11乙. 如下图,在直角坐标系xOy中,点A在y轴负半轴上,点B、C分别在x轴正、负半轴上,。点D在线段AB上,连结CD交y轴于点E,且。试求图像经过B、C、E三点的二次函数的解析式。12甲. 如图,O的直径为,过点,且与O内切
6、于点为O上的点,与交于点,且点在上,且,BE的延长线与交于点,求证:BOC12乙如图,O的内接四边形ABCD中,AC,BD是它的对角线,AC的中点I是ABD的内心. 求证:1OI是IBD的外接圆的切线;2AB+AD = 2BD.13甲. 整数a,b满足:ab是素数,且ab是完全平方数. 当2021时,求a的最小值.13乙给定一个正整数,凸边形中最多有多少个内角等于?并说明理由14甲. 求所有正整数n,使得存在正整数,满足,且.14乙将,n2任意分成两组,如果总可以在其中一组中找到数 可以相同,使得,求的最小值参考解答 一、选择题1(甲) .C解:由实数a,b,c在数轴上的位置可知,且,所以 1
7、乙B解:2甲D解:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为3,2.2乙B解:由题设x2y22x2y, 得02.因为均为整数,所以有 解得 以上共计9对.3甲D 解:由题设知,所以这四个数据的平均数为,中位数为 ,于是 .3乙B解:如图,以CD为边作等边CDE,连接AE. 由于AC = BC,CD = CE,BCD=BCA+ACD=DCE+ACD =ACE,所以BCDACE, BD = AE.又因为,所以.在Rt中,于是DE=,所以CD = DE = 4. 4甲D解:设小倩所有的钱数为x元、小玲所有的钱数为y元,均为非负整数. 由题设可得消去x
8、得 (2y7)n = y+4, 2n =.因为为正整数,所以2y7的值分别为1,3,5,15,所以y的值只能为4,5,6,11从而n的值分别为8,3,2,1;x的值分别为14,7,6,74乙C解:由一元二次方程根与系数关系知,两根的乘积为,故方程的根为一正一负由二次函数的图象知,当时,所以,即 . 由于都是正整数,所以,1q5;或 ,1q2,此时都有. 于是共有7组符合题意 5甲D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以,因此最大5乙C解:因为,所以每次操作前和操作后,黑板上的每个数加1后的乘
9、积不变设经过99次操作后黑板上剩下的数为,那么,解得 ,二、填空题6甲7x19解:前四次操作的结果分别为 3x2,3(3x2)2 = 9x8,3(9x8)2 = 27x26,3(27x26)2 = 81x80.由得 27x26487, 81x80487.解得 7x19.容易验证,当7x19时,487 487,故x的取值范围是7x196乙.7解:在两边乘以得即7甲8解:连接DF,记正方形的边长为2. 由题设易知,所以 ,由此得,所以.在RtABF中,因为,所以,于是 .由题设可知ADEBAF,所以 , .于是 , . 又,所以. 因为,所以.7乙. 解:如图,设的中点为,连接,那么因为,所以,8
10、甲解:根据题意,关于x的方程有=k240,由此得 (k3)20 又(k3)20,所以(k3)2=0,从而k=3. 此时方程为x2+3x+=0,解得x1=x2=. 故=8乙.1610解:因此,所以,因此所以共有2021-402=1610个数9甲8解:设平局数为,胜负局数为,由题设知,由此得0b43. 又 ,所以. 于是 043,87130,由此得 ,或.当时,;当时,不合题设.故9乙.解:依题意得:,所以,代入2得,两边乘以a得,即,化简得,两边除以得 所以另一方面:abc,所以 综合得另解:可令,由1得,代入2化简得,解得,另一方面:abc,所以, 综合得10甲解:如图,连接AC,BD,OD.
11、 由AB是O的直径知BCA =BDA = 90°.依题设BFC = 90°,四边形ABCD是O的内接四边形,所以BCF =BAD,所以 RtBCFRtBAD ,因此 .因为OD是O的半径,AD = CD,所以OD垂直平分AC,ODBC, 于是 . 因此.由,知因为,所以 ,BA=AD ,故.10乙.12解:依题意得 由于是偶数,a+b、a-b同奇偶,所以n是4的倍数,即,当1100时,4的倍数共有25个,但要满足题中条件的唯一正整数对,那么:,其中p是素数,因此,k只能取以下12个数:2、3、5、7、11、13、17、19、23、4、9、25,从而这样的n有12个。三、解答
12、题11甲解: 因为当时,恒有,所以,即,所以 3分当时,;当时,即,且 ,解得 8分设方程的两个实数根分别为,由一元二次方程根与系数的关系得因为,所以,解得,或因此 15分11乙.解:因为sinABC =,所以AB = 10由勾股定理,得易知, 因此 CO = BO = 6 于是,设点D的坐标为由,得所以 ,解得 因此D为AB的中点,点 D的坐标为 因此CD,AO分别为AB,BC的两条中线,点E为ABC的重心,所以点E的坐标为也可由直线CD交y轴于点E来求得. 设经过B,C,E三点的二次函数的解析式为将点E的坐标代入,解得a = 故经过B,C,E三点的二次函数的解析式为12甲 证明:连接BD,
13、因为为的直径,所以又因为,所以CBE是等腰三角形 5分设与交于点,连接OM,那么又因为,所以 10分又因为分别是等腰,等腰的顶角,所以BOC 15分12乙.证明:1如图,根据三角形内心的性质和同弧上圆周角相等的性质知:,所以, CI = CD 同理,CI = CB 故点C是IBD的外心连接OA,OC,因为I是AC的中点,且OA = OC,所以OIAC,即OICI 故OI是IBD外接圆的切线 2如图,过点I作IEAD于点E,设OC与BD交于点F由,知OCBD因为CBF =IAE,BC = CI = AI,所以所以BF = AE 又因为I是ABD的内心,所以故也可由托勒密定理得:,再将代入即得结论
14、。13甲解:设ab = mm是素数,ab = n2n是自然数. 因为 (a+b)24ab = (ab)2,所以 (2am)24n2 = m2, (2am+2n)(2am2n) = m2. 5分1当时,因为2am+2n与2am2n都是正整数,且2am+2n2am2n (m为素数),所以 2am+2nm 2,2am2n1.解得 a,. 于是 = am. 10分又a2021,即2021.又因为m是素数,解得m89. 此时,a=2025.当时,.此时,a的最小值为2025. 2当时,因为2021,所以,从而得a的最小值为2021素数。综上所述,所求的a的最小值为2021。15分13乙.解:设凸n边形最
15、多有k个内角等于150°,那么每个150°内角的外角都等于30°,而凸n边形的n个外角和为360°,所以,只有当时,k才有最大值12. 5分下面我们讨论时的情况: 1当时,显然,k的值是11; 2当时,k的值分别为1,2,3,4,5;3当时,k的值分别为7,8,9,10. 10分综上所述,当时,凸n边形最多有个内角等于150°;当时,凸n边形最多有个内角等于150°;当时,凸n边形最多有12个内角等于150°;当时,凸n边形最多有11个内角等于150°。. 15分14甲解:由于都是正整数,且,所以1,2,2021于是 5分当时,令,那么 .10分 当时,其中,令 ,那么 综上,满足
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑工程材料供货与安装方案
- 基于云计算的水利信息化解决方案
- 膝关节骨性关节炎中医饮食方案
- 钢结构天桥课程设计
- 建筑安全模板课程设计
- 2024融资租赁合同特点是那些
- Pep63-生命科学试剂-MCE
- Pencycuron-Standard-生命科学试剂-MCE
- 2024正规工业品买卖合同样品
- 食品理化检验课程设计
- 慢性淋巴细胞白血病-课件
- 销售逼单成交话术及技巧
- 《影响人类文明的里程碑》课件
- 《针织学》期末考试试卷附答案
- 风电场地质勘察设计方案
- 横河UT35A-32A-操作手册
- 计算机网络(第三版)课件(完整版)
- 《红楼梦》指导第二课 命名
- 关于建立企业干部职工末等调整和不胜任退出机制的实施方案
- 水利工程工程量清单计价解读讲解课件
- 3DMine软件自学教程
评论
0/150
提交评论