液压与气压传动课程设计卧式单面多轴钻孔组合动力滑台_第1页
液压与气压传动课程设计卧式单面多轴钻孔组合动力滑台_第2页
液压与气压传动课程设计卧式单面多轴钻孔组合动力滑台_第3页
液压与气压传动课程设计卧式单面多轴钻孔组合动力滑台_第4页
液压与气压传动课程设计卧式单面多轴钻孔组合动力滑台_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、课程设计任务书1课程设计的内容和要求(包括原始数据、技术要求、工作要求等):一、设计的主要技术参数 运动部件总重,切削力,快进快退速度,工进速度;动力滑台采用平导轨,静、动摩擦因数分别为,;往复运动的加速、减速时间均为;快进行程,工作行程。二、设计任务1、按机床要求设计液压系统,绘出液压系统图;2、确定滑台液压缸的参数; 3、计算系统各参数并列出电磁铁动作顺序表;4、选择液压元件型号并列出元件明细表;5、验算液压系统性能;引 言1第1章 明确液压系统的设计要求2第2章 负载与运动分析22.1工作负载FW22.2阻力负载22.3惯性负载2第3章 负载图和速度图的绘制3第4章 确定液压系统主要参数

2、44.1确定液压缸工作压力44.2计算液压缸主要结构参数4第5章 液压系统方案设计65.1选用执行元件65.2速度控制回路的选择65.3选择快速运动和换向回路75.4速度换接回路的选择75.5组成液压系统原理图85.5系统图的原理105.5.1快进105.5.2工进105.5.3死挡铁停留105.5.4快退105.5.5原位停止10第6章 液压元件的选择116.1确定液压泵116.1.1计算液压泵的最大工作压力116.1.2计算总流量116.2确定其它元件及辅件126.2.1确定阀类元件及辅件126.2.2确定油管12第7章 液压系统性能验算137.1压力损失的验算及泵压力的调整137.1.1

3、工进时的压力损失验算和小流量泵压力的调整137.1.2快退时压力损失验算及大流量泵卸载压力的调整137.1.4沿程压力损失147.1.5局部压力损失147.2发热温升验算16设计小结16参考文献17引 言液压系统已经在各个部门得到越来越广泛的应用,而且越先进的设备,其应用液压系统的部门就越多。液压传动是用液体作为来传递能量的,液压传动有以下优点:易于获得较大的力或力矩,功率重量比大,易于实现往复运动,易于实现较大范围的无级变速,传递运动平稳,可实现快速而且无冲击,与机械传动相比易于布局和操纵,易于防止过载事故,自动润滑、元件寿命较长,易于实现标准化、系列化。液压传动的基本目的就是用液压介质来传

4、递能量,而液压介质的能量是由其所具有的压力及力流量来表现的。而所有的基本回路的作用就是控制液压介质的压力和流量,因此液压基本回路的作用就是三个方面:控制压力、控制流量的大小、控制流动的方向。所以基本回路可以按照这三方面的作用而分成三大类:压力控制回路、流量控制回路、方向控制回路。第1章 明确液压系统的设计要求要求设计一台卧式单面多轴钻孔组合机床动力滑台的液压系统。要求实现的动作顺序为:启动快进工进快退停止。液压系统的主要参数与性能要求如下:切削力,移动部件总质量;快进行程,共进行程。快进、快退的速度为,工进速度。加速减速时间t=0.2s;静摩擦系数;动摩擦系数。该动力滑台采用水平放置的平导轨,

5、动力滑台可在任意位置停止。第2章 负载与运动分析负载分析中,暂不考虑回油腔的背压力,液压缸的密封装置产生的摩擦阻力在机械效率中加以考虑。因工作部件是卧式放置,重力的水平分力为零,这样需要考虑的力有:夹紧力,导轨摩擦力,惯性力。 在对液压系统进行工况分析时,本设计实例只考虑组合机床动力滑台所受到的工作负载、惯性负载和机械摩擦阻力负载,其他负载可忽略。2.1工作负载FW工作负载是在工作过程中由于机器特定的工作情况而产生的负载,对于金属切削机床液压系统来说,沿液压缸轴线方向的切削力即为工作负载,即Ft=18000N2.2阻力负载阻力负载主要是工作台的机械摩擦阻力,分为静摩擦阻力和动摩擦阻力两部分。导

6、轨的正压力等于动力部件的重力,设导轨的静摩擦力为,则:静摩擦阻力动摩擦阻力 2.3惯性负载最大惯性负载取决于移动部件的质量和最大加速度,其中最大加速度可通过工作台最大移动速度和加速时间进行计算。已知启动换向时间为0.05s,工作台最大移动速度,即快进、快退速度为4.5m/min,因此惯性负载可表示为 如果忽略切削力引起的颠覆力矩对导轨摩擦力的影响,并设液压缸的机械效率=0.9,根据上述负载力计算结果,可得出液压缸在各个工况下所受到的负载力和液压缸所需推力情况,如表1所表1 液压缸总运动阶段负载表(单位:N)工况负载组成负载值F/N推力F/N启动50005555.56加速3561.843957.

7、6快进25002777.78工进2050022777.78反向启动50005555.56加速3561.843957.6快退25002777.78制动1438.161597.96第3章 负载图和速度图的绘制根据上述已知数据绘制组合机床动力滑台液压系统绘制负载图(F-t)和速度图(V-t)如图第4章 确定液压系统主要参数4.1确定液压缸工作压力由表2和表3可知,组合机床液压系统在最大负载约为22000 N时宜取3MP。表2按负载选择工作压力负载/KN<5510102020303050>50工作压力/MPa< 0.811.522.53344554.2计算液压缸主要结构参数由于工作进

8、给速度与快速运动速度差别较大,且快进、快退速度要求相等,从降低总流量需求考虑,应确定采用单杆双作用液压缸的差动连接方式。通常利用差动液压缸活塞杆较粗、可以在活塞杆中设置通油孔的有利条件,最好采用活塞杆固定,而液压缸缸体随滑台运动的常用典型安装形式。这种情况下,应把液压缸设计成无杆腔工作面积是有杆腔工作面积两倍的形式,即活塞杆直径d与缸筒直径D呈d = 0.707D的关系。 工进过程中,当孔被钻通时,由于负载突然消失,液压缸有可能会发生前冲的现象,因此液压缸的回油腔应设置一定的背压(通过设置背压阀的方式),选取此背压值为p2=0.8MPa。快进时液压缸虽然作差动连接(即有杆腔与无杆腔均与液压泵的

9、来油连接),但连接管路中不可避免地存在着压降,且有杆腔的压力必须大于无杆腔,估算时取0.5MPa。快退时回油腔中也是有背压的,这时选取被压值=0.6MPa。工进时液压缸的推力计算公式为,式中:F 负载力hm液压缸机械效率A1液压缸无杆腔的有效作用面积A2液压缸有杆腔的有效作用面积p1液压缸无杆腔压力p2液压有无杆腔压力因此,根据已知参数,液压缸无杆腔的有效作用面积可计算为 液压缸缸筒直径为 mm由于有前述差动液压缸缸筒和活塞杆直径之间的关系,d = 0.707D,因此活塞杆直径为d=0.707×104.94=7419mm,根据GB/T23481993对液压缸缸筒内径尺寸和液压缸活塞杆

10、外径尺寸的规定,圆整后取液压缸缸筒直径为D=110mm,活塞杆直径为d=80mm。此时液压缸两腔的实际有效面积分别为:工作台在快进过程中,液压缸采用差动连接,此时系统所需要的流量为工作台在快退过程中所需要的流量为工作台在工进过程中所需要的流量为q工进 =A1×v1=0.43 L/min根据上述液压缸直径及流量计算结果,进一步计算液压缸在各个工作阶段中的压力、流量和功率值如下计算液压缸各工作阶段的工作压力、流量和功率设快进、快退时,回油腔压力p=0.5MPa,工进回油腔背压p2=0.8MPa。表3 各工况下的主要参数值工况推力F/N回油腔压力P2/MPa进油腔压力P1/MPa输入流量q

11、/L.min-1输入功率P/Kw计算公式快进启动5555.5601.105加速3957.60.51.233恒速2777.780.50.99825.130.418工进22777.780.82.7741.90.088快退启动5555.5601.24P= p1q加速3957.60.62.158恒速2777.780.61.89422.3850.707第5章 液压系统方案设计根据组合机床液压系统的设计任务和工况分析,所设计机床对调速范围、低速稳定性有一定要求,因此速度控制是该机床要解决的主要问题。速度的换接、稳定性和调节是该机床液压系统设计的核心。此外,与所有液压系统的设计要求一样,该组合机床液压系统应

12、尽可能结构简单,成本低,节约能源,工作可靠。5.1选用执行元件因系统运动循环要求正向快进和工进,反向快退,且快进,快退速度相等,因此选用单活塞杆液压缸,快进时差动连接,无杆腔面积A1等于有杆腔面积A2的两倍。5.2速度控制回路的选择工况图表明,所设计组合机床液压系统在整个工作循环过程中所需要的功率较小,系统的效率和发热问题并不突出,因此考虑采用节流调速回路即可。虽然节流调速回路效率低,但适合于小功率场合,而且结构简单、成本低。该机床的进给运动要求有较好的低速稳定性和速度-负载特性,因此有三种速度控制方案可以选择,即进口节流调速、出口节流调速、限压式变量泵加调速阀的容积节流调速。钻镗加工属于连续

13、切削加工,加工过程中切削力变化不大,因此钻削过程中负载变化不大,采用节流阀的节流调速回路即可。但由于在钻头钻入铸件表面及孔被钻通时的瞬间,存在负载突变的可能,因此考虑在工作进给过程中采用具有压差补偿的进口调速阀的调速方式,且在回油路上设置背压阀。由于选定了节流调速方案,所以油路采用开式循环回路,以提高散热效率,防止油液温升过高。从工况图中可以清楚地看到,在这个液压系统的工作循环内,液压要求油源交替地提供低压大流量和高压小流量的油液。而快进快退所需的时间和工进所需的时间分别为=3.6s=24s亦即是=6.67因此从提高系统效率、节省能量角度来看,如果选用单个定量泵作为整个系统的油源,液压系统会长

14、时间处于大流量溢流状态,从而造成能量的大量损失,这样的设计显然是不合理的。如果采用一个大流量定量泵和一个小流量定量泵双泵串联的供油方式,由双联泵组成的油源在工进和快进过程中所输出的流量是不同的,此时液压系统在整个工作循环过程中所需要消耗的功率估大,除采用双联泵作为油源外,也可选用限压式变量泵作油源。但限压式变量泵结构复杂、成本高,且流量突变时液压冲击较大,工作平稳性差,最后确定选用双联液压泵供油方案,有利于降低能耗和生产成本,如图3所示。图3 双泵供油油源5.3选择快速运动和换向回路根据本设计的运动方式和要求,采用差动连接与双泵供油两种快速运动回路来实现快速运动。即快进时,由大小泵同时供油,液

15、压缸实现差动连接。 本设计采用二位二通电磁阀的速度换接回路,控制由快进转为工进。与采用行程阀相比,电磁阀可直接安装在液压站上,由工作台的行程开关控制,管路较简单,行程大小也容易调整,另外采用液控顺序阀与单向阀来切断差动油路。因此速度换接回路为行程与压力联合控制形式。5.4速度换接回路的选择所设计多轴钻床液压系统对换向平稳性的要求不高,流量不大,压力不高,所以选用价格较低的电磁换向阀控制换向回路即可。为便于实现差动连接,选用三位五通电磁换向阀。为了调整方便和便于增设液压夹紧支路,应考虑选用Y型中位机能。由前述计算可知,当工作台从快进转为工进时,进入液压缸的流量由17.68L/min降为0.43

16、L/min,可选二位二通行程换向阀来进行速度换接,以减少速度换接过程中的液压冲击,选用双作用叶片泵双泵供油,调速阀进油节流阀调速的开式回路,溢流阀做定压阀。为了换速以及液压缸快退时运动的平稳性,回油路上设置背压阀,初定背压值Pb=0.8MPa。a.换向回路 b.速度换接回路图4 换向和速度切换回路的选择5.5组成液压系统原理图选定调速方案和液压基本回路后,再增添一些必要的元件和配置一些辅助性油路,如控制油路、润滑油路、测压油路等,并对回路进行归并和整理,就可将液压回路合成为液压系统,即组成如图5所示的液压系统图。图 5 液压系统图为便于观察调整压力,在液压泵的进口处,背压阀和液压腔进口处设置测

17、压点,并设置多点压力表开关,这样只需一个压力表即能观察各压力。要实现系统的动作,即要求实现的动作顺序为:启动加速快进工进快退停止。则可得出液压系统中各电磁铁的动作顺序如表5所示。表中“+”号表示电磁铁通电或行程阀压下;“”号表示电磁铁断电或行程阀复位。表4 电磁铁的动作顺序表1Y2Y3Y快进+-工进+-+快退-+-停止-5.5系统图的原理快进 快进如图所示,按下启动按钮,电磁铁1YA通电,由泵输出地压力油经2三位五通换向阀的左侧,这时的主油路为: 进油路:泵 向阀10三位五通换向阀2(1YA得电)行程阀3液压缸左腔。 回油路:液压缸右腔三位五通换向阀2(1YA得电)单向阀6行程阀3液压缸左腔。

18、由此形成液压缸两腔连通,实现差动快进,由于快进负载压力小,系统压力低,变量泵输出最大流量。工进挡块还是压下,行程开关使3YA通电,二位二通换向阀将通路切断,这时油必须经调速阀4和15才能进入液压缸左腔,回油路和减速回油完全相同,此时变量泵输出地流量自动与工进调速阀15的开口相适应,故进给量大小由调速阀15调节,其主油路为:进油路:泵 向阀10三位五通换向阀2(1YA得电)调速阀4调速阀15液压缸左腔。回油路:液压缸右腔三位五通换向阀2背压阀8液控顺序阀7油箱。死挡铁停留 当滑台完成工进进给碰到死铁时,滑台即停留在死挡铁处,此时液压缸左腔的压力升高,使压力继电器14发出信号给时间继电器,滑台停留

19、时间由时间继电器调定。快退滑台停留时间结束后,时间继电器发出信号,使电磁铁1YA、3YA断电,2YA通电,这时三位五通换向阀2接通右位,因滑台返回时的负载小,系统压力下降,变量泵输出流量又自动恢复到最大,滑快速退回,其主油路为:进油路:泵 向阀10三位五通换向阀2(2YA得电)液压缸右腔。回油路:液压缸左腔单向阀5三位五通换向阀2(右位)油箱。原位停止当滑台退回到原位时,挡块压下原位行程开关,发出信号,使2YA断电,换向阀处于中位,液压两腔油路封闭,滑台停止运动。这时液压泵输出的油液经换向2直接回油箱,泵在低压下卸荷。第6章 液压元件的选择6.1确定液压泵本设计所使用液压元件均为标准液压元件,

20、因此只需确定各液压元件的主要参数和规格,然后根据现有的液压元件产品进行选择即可。计算液压泵的最大工作压力由于本设计采用双泵供油方式,根据液压系统的工况图,大流量液压泵只需在快进和快退阶段向液压缸供油,因此大流量泵工作压力较低。小流量液压泵在快速运动和工进时都向液压缸供油,而液压缸在工进时工作压力最大,因此对大流量液压泵和小流量液压泵的工作压力分别进行计算。根据液压泵的最大工作压力计算方法,液压泵的最大工作压力可表示为液压缸最大工作压力与液压泵到液压缸之间压力损失之和。对于调速阀进口节流调速回路,选取进油路上的总压力损失,同时考虑到压力继电器的可靠动作要求压力继电器动作压力与最大工作压力的压差为

21、0.5MPa,则小流量泵的最高工作压力可估算为大流量泵只在快进和快退时向液压缸供油,图4表明,快退时液压缸中的工作压力比快进时大,如取进油路上的压力损失为0.5MPa,则大流量泵的最高工作压力为:计算总流量 表3表明,在整个工作循环过程中,液压油源应向液压缸提供的最大流量出现在快进工作阶段,为25.13L/min,若整个回路中总的泄漏量按液压缸输入流量的10%计算,则液压油源所需提供的总流量为:工作进给时,液压缸所需流量约为1.9 L/min,但由于要考虑溢流阀的最小稳定溢流量3 L/min,故小流量泵的供油量最少应为4.9L/min。据据以上液压油源最大工作压力和总流量的计算数值,因此选取P

22、V2R12-6/20型双联叶片泵 由于液压缸在快退时输入功率最大,这时液压泵工作压力为2.394MPa、流量为40L/min。取泵的总效率,则液压泵驱动电动机所需的功率为:根据上述功率计算数据,此系统选取Y132S6型电动机,其额定功率,额定转速。6.2确定其它元件及辅件确定阀类元件及辅件根据系统的最高工作压力和通过各阀类元件及辅件的实际流量,查阅产品样本,选出的阀类元件和辅件规格如表6所列。表6 液压元件规格及型号序号元件名称通过的最大流量q/L/min规格型号额定流量qn/L/min额定压力Pn/MPa额定压降Pn/MPa1双联叶片泵PV2R12-6/26(6+20)16/142三位五通电

23、液换向阀3635DY636.3< 0.53行程阀3622C-63(B)636.3< 0.34调速阀<1Q-10(B)0.050.56.35单向阀36I-63(B)636.30.26单向阀36636.30.27液控顺序阀36XY-63(B)630.36.30.38背压阀0.3B-10(B)106.39溢流阀36Y-63(B)636.310单向阀36I-63(B)636.3< 0.0211滤油器42wu-63×10063< 0.0212压力表开关KF3-E3B 3测点1613单向阀36I-63(B)636.30.214压力继电器DP1-63(B)0*注:此为

24、电动机额定转速为960r/min时的流量。确定油管在选定了液压泵后,液压缸在实际快进、工进和快退运动阶段的运动速度、时间以及进入和流出液压缸的流量,与原定数值不同,重新计算的结果如表7所列。根据表中数值,当油液在压力管中流速取3m/s时,可算得与液压缸无杆腔和有杆腔相连的油管内径分别为:取标准值20mm;取标准值15mm。因此与液压缸相连的两根油管可以按照标准选用公称通径为和的无缝钢管或高压软管。如果液压缸采用缸筒固定式,则两根连接管采用无缝钢管连接在液压缸缸筒上即可。如果液压缸采用活塞杆固定式,则与液压缸相连的两根油管可以采用无缝钢管连接在液压缸活塞杆上或采用高压软管连接在缸筒上。第7章 液

25、压系统性能验算7.1压力损失的验算及泵压力的调整工进时的压力损失验算和小流量泵压力的调整 工进时管路中的流量仅为,因此流速很小,所以沿程压力损失和局部压力损失都非常小,可以忽略不计。这是进油路上仅考虑调速阀的压力损失,回油路上只有背压阀的压力损失,小流量泵的调整压力应等于工进时液压缸的工作压力加上进油路压差则即小流量泵的溢流阀12应按此压力调整。快退时压力损失验算及大流量泵卸载压力的调整 因快退时,液压缸无杆腔的回油量是进油量的两倍,起压力损失比快进时要大,因此必须计算快退时的进油路与回油路的压力损失,仪表确定大流量泵的卸载压力。已知:快退时进油管和回油管长度均为,油管直径,通过的流量为进油路

26、,回油路。液压系统选用N32号液压油,考虑最低工作温度为15,由手册查出此时油的运动粘度,油的密度,液压系统元件采用集成块似的配置形式。确定油流的流动状态 按1式(1-30)经单位换算为式中 平均流速();油管内径();油的运动粘度();通过的流量()。则进油路中液流的雷诺数为回油路中液流的雷诺数为由上可知,进回油路的流动都是层流。沿程压力损失由1式(1-37)可算出进油路和回油路的压力损失。在进油路上,流速则压力损失为在回油路上,流速为进油路流速的两倍即,则压力损失为局部压力损失由于采用集成块式的液压装置,所以只考虑阀类元件和集成块内油路的压力损失。通过各阀的局部压力损失按1式(1-39)计

27、算,结果列于表5中。表5 阀类元件局部压力损失元件名称额定流量实际通过的流量额定压力损失实际压力损失单向阀2252021.025三位五通电磁阀36320/4040.325/1.2875二位二通电磁阀4634041.2875单向阀11251620.575注:快退时经过三位五通阀的两油道流量不同,压力损失也不同。若取集成块进油路的压力损失,回油路压力损失为,则进油路和回油路的总的压力损失为查表1-1知快退时液压缸负载;则快退时液压缸的工作压力为因此,大流量泵卸荷阀2的调整压力应大于。从以上验算结果可以看出,各种工况下的实际压力损失都小于初选的压力损失值,而且比较接近,说明液压系统的油路结构、元件的参数是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论