版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数列前n项和的求法总结核心提示:求数列的前n项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。一 公式法(1) 等差数列前n项和: Sn=n(a1+an)2=na1+n(n+1)2d (2) 等比数列前n项和: q=1时, Sn=na1; q1时, Sn=a1(1-qn)1-q(3) 其他公式: Sn=1+2+3+n=12nn+1Sn=12+22+32+n2=16n(n+1)(2n+1)Sn=13+23+33+n3=12nn+12例题1:求数列 112,214,318
2、,n+12n, 的前n项和Sn解: 点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。练习:二.倒序相加法如果一个数列an,与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。例题1:设等差数列an,公差为d,求证:an的前n项和Sn=n(a1+an)/2解:Sn=a
3、1+a2+a3+.+an 倒序得:Sn=an+an-1+an-2+a1 +得:2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+(an+a1)又a1+an=a2+an-1=a3+an-2=an+a12Sn=n(a2+an) Sn=n(a1+an)/2点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+an=a2+an-1=a3+an-2=an+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。练习:(1)三.裂项相消法裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。 例题3:求数列(nN*)的和解:
4、点拨:此题先通过求数列的通项找到可以裂项的规律,再把数列的每一项拆开之后,中间部分的项相互抵消,再把剩下的项整理成最后的结果即可。四.错位相减法错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列an·bn中,an成等差数列,bn成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。例题4:求数列nan(nN*)的和解:设 Sn = a + 2a2 + 3a3 + + nan若a = 1则:Sn = 1 + 2 + 3 + + n = 若a 1则:aSn = a2 + 2a3 + + (n-1)an + nan+1-得:(1-a)
5、Sn = a + a2 + a3 + + an - nan+1 则:练习:(1)(2)(3)求:Sn=1+5x+9x2+4n-3xn-1.解:Sn=1+5x+9x2+4n-3xn-1 , 两边同乘以x,得xSn=x+5x2+9x3+4n-3xn -得,(1-x)Sn=1+4x+x2+x3+xn-4n-3xn再用公式法里面的公式即可。五.迭加法迭加法主要应用于数列an满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an ,从而求出Sn。例题5:已知数列6,9,14,2
6、1,30,其中相邻两项之差成等差数列,求它的前n项和。解:a2 - a1 = 3, a3 - a2 = 5, a4 - a3 = 7 , an - an-1 = 2n-1把各项相加得:an - a1 = 3 + 5 + 7 + + (2n - 1) =an = n2 - 1 + a1 = n2 + 5Sn = 12 + 22 + + n2 + 5n =+ 5n点拨:本题应用迭加法求出通项公式,并且求前n项和时应用到了12 + 22 + + n2=因此问题就容易解决了。六.分组求和法所谓分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数
7、列,然后分别求和,再将其合并。例题6:求S = 12 - 22 + 32 - 42 + + (-1)n-1n2(nN*)解:当n是偶数时:S = (12 - 22) + (32 - 42) + + (n - 1)2 - n2= - (1 + 2 + + n) = - 当n是奇数时:S = (12 - 22) + (32 - 42) + + (n - 2)2 - (n - 1)2 + n2= - 1 + 2 + + (n - 1) + n2= -综上所述:S = (-1)n+112n(n+1)点拨:分组求和法的实质是:将不能直接求和的数列分解成若干个可以求和的数列,分别求和。练习:(1)(2)作业:(2016.07.20)1. 已知等差数列an,其前n项和为Sn,且a4=9,S5=35.(1) 求数列an得通项公式;(2) 若bn=2n·an+n,求数列bn的前n项和为Tn.(错位相减法)2. 设数列an满足a1+3a2+32a3+3n-1an=n3,nN*.(1)求数列an得通项公式;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC TS 9922:2024 EN Programming Languages - Technical specification for C++ extensions for concurrency 2
- 欢乐暑假小学生安全第一
- 2022五四青年节学习心得体会10篇
- 非遗文化传承守护非物质文化遗产
- 农村集体土地租赁合同范本
- 创建年度工作计划四篇
- 小学生寒假日记8篇
- 感恩母校的演讲稿集锦15篇
- 学生《零容忍》观后感范本8篇
- 档案安全管理
- 期末测试卷(一)2024-2025学年 人教版PEP英语五年级上册(含答案含听力原文无听力音频)
- 2023-2024学年广东省深圳市南山区八年级(上)期末英语试卷
- 2024广西专业技术人员继续教育公需科目参考答案(100分)
- 2024年上海市中考语文备考之150个文言实词刷题表格及答案
- 2024年汉口银行股份有限公司招聘笔试冲刺题(带答案解析)
- 2024年日历表(空白)(一月一张-可编辑做工作日历)
- 广东省中山市2023-2024学年四年级上学期期末数学试卷
- 2022-2024年国际经济与贸易专业人才培养调研报告
- 奇门遁甲入门教程(不收费)课件
- 物业维修管家巡查记录表
- 桥梁维修加固施工组织设计
评论
0/150
提交评论