下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、海南省海口市第十四中学高中数学必修4:第二章 平面向量导学案 2.4.2平面向量的数量积的坐标表示 模 夹角【学习目标】1. 在坐标形式下,掌握平面向量数量积的运算公式及其变式(夹角公式);2. 理解模长公式与解析几何中两点之间距离公式的一致性.【学习过程】一、自主学习(一)知识链接:复习:1.向量与的数量积= .2.设、是非零向量,是与方向相同的单位向量,是与的夹角,则 ; ; .(二)自主探究:(预习教材P106P108)探究:平面向量数量积的坐标表示问题1:已知两个非零向量,怎样用与的坐标表示呢?1.平面向量数量积的坐标表示已知两个非零向量 (坐标形式)。这就是说:(文字语言)两个向量的
2、数量积等于 。问题2:如何求向量的模和两点,间的距离?2.平面内两点间的距离公式()设则_或_。()若,则=_(平面内两点间的距离公式)。问题3:如何求的夹角和判断两个向量垂直?3两向量夹角的余弦:设是与的夹角,则_向量垂直的判定:设则_二、合作探究1、已知(1)试判断的形状,并给出证明. (2)若ABDC是矩形,求D点的坐标。2、已知,求与的夹角.变式:已知_.三、交流展示1、若,则= 2、已知,若,试求的值.3、已知,当k为何值时,(1)垂直?(2)平行吗?它们是同向还是反向?四、达标检测(A组必做,B组选做)A组:1. 已知,则等于( ) A. B. C. D.2. 若,则与夹角的余弦为( ) A. B. C. D.3. ,则= ,4.已知向量,若,则 。5.已知四点,求证:四边形是直角梯形.B组:1. 已知,且,求:(1); (2)、的夹角.2. 已知点和,问能否在轴上找到一点,使,若不能,说明理由;若能,求点坐标.3. 已知(,1),. (1)求证:;(2)若存在不同时为0的实数k和t,使
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国开大学劳动合同法形考
- 合同法36条对应民法典 区别
- 2024《集体合同示范文本》
- 2024新版个人对个人抵押合同范本
- 紧急事件安全防控
- 2024专卖店劳动合同范本
- 物业工程部技能培训课件
- 2024劳务分包合同范本建筑分包合同范本
- 2024所有户外广告合同标准版
- 2024《水电安装合同》
- 2024年小轿车买卖合同标准版本(三篇)
- 八年级生物中考备考计划
- 2024-2030年全球及中国湿巾和卫生纸行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 公务员2019年国考《申论》真题及答案(省级)
- 2024年会计专业考试初级会计实务试卷与参考答案
- 职业技术学院材料工程技术专业调研报告
- 五年级阅读《概括题专项训练》
- 2024-2030年中国辐照加速器行业运营态势及未来前景预测研究报告
- 2024年上海市中考政治真题含解析
- 2024年中国铁路南宁局集团限公司招聘81人高频难、易错点500题模拟试题附带答案详解
- 2024三新供电服务限公司第二批供电服务职工招聘261人高频难、易错点500题模拟试题附带答案详解
评论
0/150
提交评论