电场-磁场-重力场的复合场、组合场问题_第1页
电场-磁场-重力场的复合场、组合场问题_第2页
电场-磁场-重力场的复合场、组合场问题_第3页
电场-磁场-重力场的复合场、组合场问题_第4页
电场-磁场-重力场的复合场、组合场问题_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上电场,磁场,重力场的复合场、组合场问题一、复合场1.一个质量m0.1 g的小滑块,带有q5104 C的电荷量,放置在倾角30的光滑斜面上(斜面绝缘),斜面置于B0.5 T的匀强磁场中,磁场方向垂直纸面向里,如图8-2-29所示,小滑块由静止开始沿斜面滑下,其斜面足够长,小滑块滑至某一位置时,要离开斜面求:(1)小滑块带何种电荷?(2)小滑块离开斜面的瞬时速度多大?(3)该斜面的长度至少多长? 图8-2-292.如图8-3-6所示的平行板之间,存在着相互垂直的匀强磁场和匀强电场,磁场的磁感应强度B10.20 T,方向垂直纸面向里,电场强度E11.0105 V/m,PQ为

2、板间中线紧靠平行板右侧边缘xOy坐标系的第一象限内,有一边界线AO,与y轴的夹角AOy45,边界线的上方有垂直纸面向外的匀强磁场,磁感应强度B20.25 T,边界线的下方有水平向右的匀强电场,电场强度E25.0105 V/m,在x轴上固定一水平的荧光屏一束带电荷量q8.01019 C、质量m8.01026 kg的正离子从P点射入平行板间,沿中线PQ做直线运动,穿出平行板后从y轴上坐标为(0,0.4 m)的Q点垂直y轴射入磁场区,最后打到水平的荧光屏上的位置C.求:图8-3-6(1)离子在平行板间运动的速度大小;(2)离子打到荧光屏上的位置C的坐标;(3)现只改变AOy区域内磁场的磁感应强度大小

3、,使离子都不能打到x轴上,磁感应强度大小B2应满足什么条件?3.(2012重庆卷,24)有人设计了一种带电颗粒的速率分选装置,其原理如图8-3-7所示两带电金属板间有匀强电场,方向竖直向上,其中PQNM矩形区域内还有方向垂直纸面向外的匀强磁场一束比荷(电荷量与质量之比)均为的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O进入两金属板之间,其中速率为v0的颗粒刚好从Q点处离开磁场,然后做匀速直线运动到达收集板重力加速度为g,PQ3d,NQ2d,收集板与NQ的距离为l,不计颗粒间相互作用求:(1)电场强度E的大小;(2)磁感应强度B的大小; (3)速率为v0(1)的颗粒打在收集板上的位置到O点

4、的距离 图8-3-74.在如图8-3-9所示的空间里,存在垂直纸面向里的匀强磁场,磁感应强度为B.在竖直方向存在交替变化的匀强电场如图(竖直向上为正),电场大小为E0.一倾角为长度足够长的光滑绝缘斜面放置在此空间斜面上有一质量为m,带电量为q的小球,从t0时刻由静止开始沿斜面下滑,设第5秒内小球不会离开斜面,重力加速度为g.求:(1)第6秒内小球离开斜面的最大距离(2)第19秒内小球未离开斜面,角的正切值应满足什么条件?图8-3-9总结:1静止或匀速直线运动:当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动2匀速圆周运动:当带电粒子所受的重力与电场力大小相等,方向相反时,带

5、电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动3一般的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一条直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线4分阶段运动:带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.二、组合场5.如图8-3-14所示的平面直角坐标系中,虚线OM与x轴成45角,在OM与x轴之间(包括x轴)存在垂直纸面向里、磁感应强度大小为B的匀强磁场,在y轴与OM之间存在竖直向下、电场强度大小为E的匀强电场,有一个质量为m,电荷量为q的带正电的粒子以某速度

6、沿x轴正方向从O点射入磁场区域并发生偏转,不计带电粒子的重力和空气阻力,在带电粒子进入磁场到第二次离开电场的过程中,求:(1)若带电粒子从O点以速度v1进入磁场区域,求带电粒子第一次离开磁场的位置到O点的距离(2)若带电粒子第二次离开电场时恰好经过O点,求粒子 图8-3-14最初进入磁场时速度v的大小并讨论当v变化时,粒子第二次离开电场时的速度大小与v大小的关系6.如图14所示,在xOy平面的第一象限有一匀强电场,电场的方向平行于y轴向下;在x轴和第四象限的射线OC之间有一匀强磁场,磁感应强度的大小为B,方向垂直于纸面向外有一质量为m,带有电荷量q的质点由电场左侧平行于x轴射入电场质点到达x轴

7、上A点时,速度方向与x轴的夹角为,A点与原点O的距离为d.接着,质点进入磁场,并垂直于OC飞离磁场,不计重力影响若OC与x轴的夹角也为,求:(1)粒子在磁场中运动速度的大小;(2)匀强电场的场强大小 图147.如图所示,在xOy平面的第象限内有半径为R的圆分别与x轴、y轴相切于P、Q两点,圆内存在垂直于xOy面向外的匀强磁场。在第象限内存在沿y轴负方向的匀强电场,电场强度为E。一带正电的粒子(不计重力)以速率v0从P点射入磁场后恰好垂直y轴进入电场,最后从M(3R,0)点射出电场,出射方向与x轴正方向夹角为,且满足45,求:(1)带电粒子的比荷;(2)磁场磁感应强度B的大小;(3)粒子从P点射

8、入磁场到M点射出电场的时间。8.如图所示,在xOy平面内,一带正电的粒子自A点经电场加速后从C点垂直射入偏转电场(视为匀强电场),偏转后通过极板MN上的小孔O离开电场,粒子在O点时的速度大小为v,方向与x轴成45角斜向上。在y轴右侧yd范围内有一个垂直纸面向里、磁感应强度大小为B的匀强磁场,粒子经过磁场偏转后垂直打在极板MN上的P点。已知NC之间距离为d,粒子重力不计,求:(1)P点的纵坐标;(2)粒子从C点运动到P点所用的时间;(3)偏转电场的电场强度。9.(2012山东卷)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN

9、和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图乙所示,正反向电压的大小均为U0,周期为T0。在t0时刻将一个质量为m、电量为q(q0)的粒子由S1静止释放,粒子在电场力的作用下向右运动,在t时刻通过S2垂直于边界进入右侧磁场区。(不计粒子重力,不考虑极板外的电场)(1)求粒子到达S2时的速度大小v和极板间距d。(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件。(3)若已保证了粒子未与极板相撞,为使粒子在t3T0时刻再次到达S2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小。电场,磁场,重力场的复合场、组合场问题答案1.解析(1)小滑块沿斜面下

10、滑过程中,受重力mg、斜面支持力FN和洛伦兹力F.若要小滑块离开斜面,洛伦兹力F方向应垂直斜面向上,根据左手定则可知,小滑块应带负电荷(2)小滑块沿斜面下滑时,垂直斜面方向的加速度为零,有qvBFNmgcos 0.当FN0时,小滑块开始脱离斜面,此时,qvBmgcos ,得v m/s2 m/s.(3)下滑过程中,只有重力做功,由动能定理得mgxsin mv2,斜面的长度至少应是x m1.2 m.答案(1)负电荷(2)2 m/s(3)1.2 m2解析图甲(1)设离子的速度大小为v,由于沿中线PQ做直线运动,则有qE1qvB1,代入数据解得v5.0105 m/s.(2)离子进入磁场,做匀速圆周运动

11、,由牛顿第二定律有qvB2m得,r0.2 m,作出离子的运动轨迹,交OA边界于N,如图甲所示,OQ2r,若磁场无边界,一定通过O点,则圆弧QN的圆周角为45,则轨迹圆弧的圆心角为90,过N点做圆弧切线,方向竖直向下,离子垂直电场线进入电场,做类平抛运动,yOOvt,xat2,而a,则x0.4 m,离子打到荧光屏上的位置C的水平坐标为xC(0.20.4)m0.6 m.图乙(3)只要粒子能跨过AO边界进入水平电场中,粒子就具有竖直向下的速度而一定打在x轴上如图乙所示,由几何关系可知使离子不能打到x轴上的最大半径r m,设使离子都不能打到x轴上,最小的磁感应强度大小为B0,则qvB0m,代入数据解得

12、B0 T0.3 T, 则B20.3 T.答案(1)5.0105 m/s(2)0.6 m(3)B20.3 T3.解析(1)设带电颗粒的电荷量为q,质量为m.有Eqmg,将代入,得Ekg.(2)如图甲所示,有qv0Bm,R2(3d)2(Rd)2,得B.(3)如图乙所示,有qv0Bm,tan ,y1R1,y2ltan ,yy1y2,得yd(5).答案(1)kg(2)(3)d(5)4.解析(1)设第一秒内小球在斜面上运动的加速度大小为a,由牛顿第二定律得:(mgqE0)sin ma第一秒末的速度为:vat1在第二秒内:qE0mg所以小球将离开斜面在上方做匀速圆周运动,则由向心力公式得qvBm圆周运动的

13、周期为:T1 s由题图可知,小球在奇数秒内沿斜面做匀加速运动,在偶数秒内离开斜面做完整的圆周运动所以,第五秒末的速度为:v5a(t1t3t5)6gsin 小球离开斜面的最大距离为d2R3由以上各式得:d.(2)第19秒末的速度:v19a(t1t3t5t7t19)20gsin 小球未离开斜面的条件是:qv19B(mgqE0)cos 所以:tan .答案(1)(2)tan 5.解析(1)粒子在磁场中做匀速圆周运动,根据牛顿第二定律有qv1Bm解得R设粒子从N点离开磁场,如图所示,由几何知识可知ONR联立两式解得:ON(2)粒子第二次离开磁场后在电场中做类平抛运动,若粒子第二次刚好从O点离开电场,则:水平位移x2Rvt解得:t竖直位移y2Rat2而a联立式并解得v若v,则粒子从y轴离开电场,轨迹如上图,水平位移x2Rvt得tvyatt则粒子离开电场时的速度v2 若v,则粒子从OM边界离开电场,粒子在x、y方向的位移大小相等xvtyxt,解得vy2v则粒子离开电场时的速度v3v答案(1)(2)见解析6(1)sin (2)sin3cos 7.解析(1)在M点处:vyv0tanqEam竖直方向:vyat3水平方向:3Rv0t3得:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论