《等腰三角形》教学设计及教学反思_第1页
《等腰三角形》教学设计及教学反思_第2页
《等腰三角形》教学设计及教学反思_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上等腰三角形教学设计与教学反思 【设计思想】本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。教材通过学生对等腰三角形的叠合操作,得出等腰三角形的轴对称性,给出了等腰三角形的性质1,并对性质1进行了证明,从性质1的证明过程中,得出等边三角形性质及等腰三角形性质2,这里“等边对等角是今后证明两角相等常用方法之一,而等腰三角形的“三线合一”是今后证明两条线段相等、两个角相等及两条直线互相垂直的重要依据。运用观察、操作来领悟规律,以全等三角形为推理工具,在交流中突破难点。采用直观教学发现法和启发诱导教学法,与学生实践操作、合作探究。【教学目标】1、知识与能

2、力目标:掌握等腰三角形的性质及其两个推论。运用等腰三角形的性质及其推论进行有关证明和计算。2、过程与方法目标:让学生体验等腰三角形是一个轴对称性图形。经历操作、发现、猜想、证明的过程,培养学生的逻辑思维能力。3、情感、态度、价值观目标:培养学生协作学习精神,使学生理解事物之间是相互联系和运动变化,培养学生辩证唯物主义观念。【教学重点】等腰三角形的性质定理及其证明【教学难点】等腰三角形性质和判定的探索和应用【教学工具】多媒体、长方形的纸片、剪刀【教学过程】一、创设问题情境,引出本节内容活动1如图(1),把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的ABC有什么特征?你能画出具

3、有这种特征的三角形吗?图(1)学生动手操作,从剪出的图形观察ABC的特点,可以发现AB=AC让学生总结出等腰三角形的概念:有两边相等的三角形叫作等腰三角形,相等的两边叫作腰,另一边叫作底边,两腰的夹角叫作顶角,底边和腰的夹角叫作底角如图ABC中,若AB=AC,则ABC是等腰三角形,AB、AC是腰、BC是底边、A是顶角,B和C是底角二、合作交流,探究等腰三角形的性质活动2把活动1中剪出的ABC沿折痕AD对折,找出其中重合的线段,填入下表:重合的线段重合的角从上表中你能发现等腰三角形具有什么性质吗?学生经过观察,独立完成上表,然后小组讨论交流,从表中总结等腰三角形的性质引导学生归纳:性质1 等腰三

4、角形的两个底角相等(简写成“等边对等角”);性质2 等腰三角形顶角平分线、底边上的中线、底边上的高互相重合性质3 等腰三角形是轴对称图形,对称轴为顶角角平分线(或底边上的高,或底边上的中线)所在直线。活动3 你能用所学知识验证上述性质吗?问题:如图(3),已知ABC中,AB=AC。求证:B=C;AD平分A,ADBC图(3)学生在独立思考的基础上进行讨论,寻找解决问题的办法,若证B=C,根据全等三角形的知识可以知道,只需要证明这两个角所在的三角形全等即可,于是可以作辅助线构造两个三角形,做BC边上的中线AD,证明ABD和ACD全等即可,根据条件利用“边边边”可以证明让学生充分讨论,根据所学的数学

5、知识利用逻辑推理的方式进行证明,证明过程中注意学生表述的准确性和严谨性解答在ABD和ACD中所以ABDACD(SSS),所以B=C,BAD=CAD,ADB=ADC90°添加辅助线的方法多样,让学生在去讨论交流。也为下边的讲解做铺垫。巩固练习:第51页练习如图(4),位于海上A、B两处的两艘救生船接到O处遇险船只的报警,当时测得AB如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?学生首先独立思考,然后可以分组讨论,观察问题中的条件,发现问题的本质是在条件AB下,线段AO和BO是否相等,证明两条线段相等,可以考虑这两条线段所在的三角形全等,而图中没有别

6、的三角形,因此需要构造全等的三角形教师启发学生发现问题本质,让学生探索“AO=BO”成立的原因,引导学生构造全等三角形:过O作OCAB于点C,利用AAS可以证明OAC和OBC全等,进而得到AO=BO最后归纳出等腰三角形的判定方法如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)解答过点O作OCAB于点C,由AB、ACO=BCO、OC=OC易证AOCBOC,进而得到AO=BO三、应用提高例题1如图(5),在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求ABC各个内角的度数 学生小组合作、分组讨论,交流引导学生分析图形中的关于角的数量关系(三角形的内角、外角

7、、等腰三角形的底角)若设Ax,则有x4x180°,得到x36°,进一步得到两个底角的度数解答略例题2如图(6),CAE是ABC的一个外角,12,AD/BC,求证:AB=AC学生自主探索,必要时教师进行引导,利用等腰三角形的判定方法来证明,只要推出B=C即可,由AD/BC和AD平分EAC容易得到四、归纳小结等腰三角形的哪些性质?性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。五、布置作业作业:习题12.3 第1、3、4、7题六、教学反思本节课通过对等腰三角形叠合操作引出等腰三角形是轴对称图形,进而得到

8、等腰三角形的性质1:等边对等角,这种操作有利于学生发现等腰三角形性质的证明,给出三种不同的辅助线,是用来培养学生的发散思维能力。新教材中例1设计与旧人教版求“人字形的角度”相比具有一定难度,为此,在讲完性质1后,设计如教案中练习1,一方面是用来巩固性质1,其中练习1中2、3、4具有变式教学思想,另一方面是为推论及性质2作准备。教案中练习2是用来巩固性质2,重点是培养学生的几何符号语言表达能力。让学生回顾,是为了培养学生的语言表达能力,同时加深学生对所学知识的理解,促进学生对学习过程的进行反思。在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论