版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.扇形和和圆锥1用一张面积为60的扇形铁皮,做成一个圆锥容器的侧面(接缝处不计),若这个圆锥的底面半径为5,则这个圆锥的母线长为 。2已知圆锥的底面半径是3cm,母线长为6cm,则这个圆锥的侧面积为_ _cm2(结果保留)3如果圆的半径为6,那么60的圆心角所对的弧长为_.4已知扇形的半径为,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为 .5已知圆锥的底面半径是3cm,高是4cm,则这个圆锥的侧面展开图的面积是_ cm26已知圆锥的高为4cm,底面半径为3cm,则此圆锥的侧面积为 cm2.(结果中保留)7已知圆锥的高是4,母线长为5,则它的侧面积为_(结果保留)8已知圆锥底面
2、圆的半径为6cm,它的侧面积为60cm2,则这个圆锥的高是cm9用一圆心角为120,半径为6cm的扇形做成一个圆锥的侧面,则这个圆锥的底面半径是_。10一条弧所对的圆心角为135,弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为 。11用半径为30cm,圆心角为120的扇形卷成一个无底的圆锥形筒,则这个圆锥形筒的底面半径为 cm12小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm,母线长为30cm的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为 cm2(结果保留)13如图,如果从半径为9的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这
3、个圆锥的高为 14如图所示,一半径为1的圆内切于一个圆心角为60的扇形,则扇形的周长为 15如图,在ABC中,A=90,AB=AC=2,点O是边BC的中点,半圆O与ABC相切于点D、E,则阴影部分的面积等于 16某台钟的时针长为9分米,从上午7时到上午11时该钟时针针尖走过的路程是 分米(结果保留)17在RtABC中,C=90,AC=12,BC=5,将ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是_.18如图,现有一圆心角为90,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),求该圆锥的侧面积和圆锥的高(结果保留)19一个圆锥形零件的母线长为6,底面的半径为2,
4、求这个圆锥形零件的侧面积和全面积20如图,一个圆锥的高为,侧面展开图是半圆,求:(1)圆锥的底面半径与母线之比;(2)圆锥的全面积21如图,粮仓的顶部是圆锥形,这个圆锥的底面周长为32cm,母线长为7cm,为了防雨,需要在它的顶部铺上油毡,所需油毡的面积至少是多少?22如图,CD为O的直径,CDAB,垂足为点F,AOBC,垂足为点E,AO=1(1)求C的大小;(2)求阴影部分的面积23如图AB是O的切线,切点为B,AO交O于点C,过点C作DCOA,交AB于点D.(1)求证:CDOBDO;(2)若A30,O的半径为4,求阴影部分的面积(结果保留)24如图,已知O分别切ABC的三条边AB、BC、C
5、A于点D、,SABC=10cm2,CABC=10cm,且C=60求:()O的半径;()扇形的面积(结果保留);()扇形的周长(结果保留)。25如图,在ABC中,ACB=90,E为BC上一点,以CE为直径作O,AB与O相切于点D,连接CD,若BE=OE=2(1)求证:A=2DCB;(2)求图中阴影部分的面积(结果保留和根号)26如图,AB是O的直径,C是O上的一点,DA与O相切于点A,DA=DC=(1)求证:DC是O的切线;(2)若CAB=30,求阴影部分的面积.参考答案112【解析】试题分析:先根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到扇形的弧长=10,再根据扇形的半径
6、等于圆锥的母线长和扇形的面积公式求解:这个圆锥的母线长为l,这个圆锥的底面半径为5,扇形的弧长=25=10.扇形的面积为60,60=l10,l=12考点:圆锥的计算218【解析】试题分析:底面圆的半径为3,则底面周长=6,侧面面积=66=18cm2故答案是18考点:圆锥的计算3【解析】试题分析:直接根据弧长公式进行计算试题解析:根据弧长的公式考点: 弧长的计算4【解析】试题分析:圆锥的侧面积=故答案是考点:圆锥的计算515【解析】试题分析:因为圆锥的底面半径是3,高是4,所以圆锥的母线长为5,所以这个圆锥的侧面展开图的面积是35=15故答案是15考点:圆锥的计算615.【解析】试题分析:高线长
7、为4cm,底面的半径是3cm,由勾股定理知:母线长为5cm.圆锥侧面积=底面周长母线长=65=15(cm2)考点:1.勾股定理;2.圆锥的计算715【解析】试题分析:圆锥的高是4,母线长为5,所以圆锥的底面半径是3.圆锥的侧面积=2352=15故答案是15考点:圆锥的计算88.【解析】试题分析:设圆锥的母线长为l,由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,则l26=60,然后利用勾股定理计算圆锥的高试题解析:设圆锥的母线长为l,根据题意得 l26=60,解得l=10,所以圆锥的高=(cm)考点: 圆锥的计算.92cm【解析】试题分析:利用圆锥的侧面
8、展开图中扇形的弧长等于圆锥底面的周长可得试题解析:设此圆锥的底面半径为r,由题意,得,解得r=2cm考点: 圆锥的计算1040cm.【解析】试题分析:设出弧所在圆的半径,由于弧长等于半径为5cm的圆的周长的3倍,所以根据原题所给出的等量关系,列出方程,解方程即可试题解析:设弧所在圆的半径为r,由题意得, ,解得,r=40cm考点:圆心角、弧、弦的关系.1110【解析】试题分析:扇形的弧长是:=20cm,设底面半径是r,则2r=20,解得:r=10故答案是10考点:圆锥的计算12270【解析】试题分析:圆锥的侧面积=底面半径母线长,把相关数值代入计算即可试题解析:圆锥形礼帽的侧面积=930=27
9、0cm2考点: 圆锥的计算.13.【解析】试题分析:因为圆锥的高,底面半径,母线构成直角三角形,则留下的扇形的弧长=,所以圆锥的底面半径r=122=6,所以圆锥的高=. 试题解析:从半径为9cm的圆形纸片剪去圆周的一个扇形,剩下的扇形的角度=360=240,留下的扇形的弧长=,圆锥的底面半径r=122=6,圆锥的高=.考点: 1.弧长的计算;2.勾股定理146+【解析】试题分析:首先求出扇形半径,进而利用扇形弧长公式求出扇形弧长,进而得出扇形周长试题解析:如图所示:设O与扇形相切于点A,B,则CAO=90,ACB=30,一半径为1的圆内切于一个圆心角为60的扇形AO=1,CO=2AO=2,BC
10、=2+1=3,扇形的弧长为:则扇形的周长为:3+3+=6+考点: 1.相切两圆的性质;2.弧长的计算.15【解析】试题分析:首先连接OD,OE,易得BDFEOF,继而可得S阴影=S扇形DOE,即可求得答案试题解析:连接OD,OE,半圆O与ABC相切于点D、E,ODAB,OEAC,、在ABC中,A=90,AB=AC=2,四边形ADOE是正方形,OBD和OCE是等腰直角三角形,OD=OE=AD=BD=AE=EC=1,ABC=EOC=45,ABOE,DBF=OEF,在BDF和EOF中,BDFEOF(AAS),考点: 1.切线的性质;2.扇形面积的计算166【解析】试题分析:从上午7时到上午11时,时
11、针共转了4个大格共120,然后根据弧长公式算出时针针尖走过的路程试题解析:时针从上午7时走到上午11时时针共转了120时针尖走过的路程为:(分米)故答案为:6考点: 1.弧长的计算;2.钟面角17【解析】由已知得,圆锥的母线长,底面半径为5, 圆锥的侧面积是18圆锥的高为cm,侧面积为16cm2【解析】试题分析:利用扇形的弧长公式可得圆锥侧面展开图的弧长,除以2即为圆锥的底面半径,利用勾股定理可得圆锥的高,圆锥的侧面积=底面半径母线长,把相关数值代入计算即可试题解析:扇形的弧长为cm,圆锥底面的周长为4cm,圆锥底面的半径为4(2)=2cm,圆锥底面的高为(cm)圆锥的侧面积=28=16(cm
12、2),答:圆锥的高为cm,侧面积为16cm2考点: 1.圆锥的计算;2.扇形面积的计算.19见解析.【解析】试题分析:圆锥形的侧面积为底面周长乘以高,关键求高,根据勾股定理可得高,全面积等于侧面积加上一个圆的面积.试题解析:根据勾股定理可得高,.考点:1.圆锥形的侧面积和全面积.2.勾股定理.20详见解析【解析】试题分析:(1)由题意可知:圆锥的底面周长等于圆锥的弧长,由此可得,化简可得:.(2)首先根据勾股定理可求得圆锥的底面半径和圆锥的母线的长度,然后利用圆锥的侧面积即展开图的半圆面积加上圆锥的底面积即可求出圆锥的全面积.试题解析:解:(1)由题意可知,(2)在中,考点:圆锥的全面积的计算
13、.21112cm2.【解析】试题分析:圆锥的侧面积S=LR=,其中R是扇形母线,L是扇形弧长,也是底面圆周的周长,由题, 这个圆锥的底面周长为32cm,母线长为7cm,所以L=32cm,R=7cm,所以112 cm2 .试题解析:圆锥的底面周长为32cm,母线长为7cm, 圆锥的侧面积为:112cm2 ,答:所需油毡的面积至少是112cm2.考点:圆锥的侧面积.22解:(1)CD是圆O的直径,CDAB,。C=AOD。AOD=COE,C=COE。AOBC,C=30。(2)连接OB,由(1)知,C=30,AOD=60。AOB=120。在RtAOF中,AO=1,AOF=60,AF=,OF=。AB=。
14、【解析】试题分析:(1)根据垂径定理可得,C=AOD,然后在RtCOE中可求出C的度数。(2)连接OB,根据(1)可求出AOB=120,在RtAOF中,求出AF,OF,然后根据S阴影=S扇形OABSOAB,即可得出答案。23(1)见解析 (2)【解析】(1)证明:AB切O于点B,OBAB,即B90.又DCOA,OCD90.在RtCOD与RtBOD中,ODOD,OBOC,RtCODRtBOD.CDOBDO.(2)在RtABO中,A30,OB4,BOC60,RtCODRtBOD,BOD30,BDOBtan 30.S四边形OCDB2SOBD24.BOC60,S扇形OBC.S阴影S四边形OCDBS扇形
15、OBC.24(1)2cm;(2) cm2;(3)(cm).【解析】试题分析:(1)连接AO、BO、CO,根据SABC=SAOC+SAOB+SBOC即可求出O的半径;(2)因为OFAC,OEBC,C=60可求出EOF的度数,代入扇形面积计算公式即可求出扇形的面积;(3)利用扇形的周长=扇形的弧长+半径2,即可求出扇形的周长.试题解析:(1)如图,连接AO、BO、CO,则SABC=SAOC+SAOB+SBOC,又AB+BC+AC=10,r=2cm;(2)因为OFAC,OEBC,C=60所以EOF=120所以S扇形EOF= cm2(3)扇形EOF的周长=(cm).考点: 1.面积法;2.扇形面积计算
16、;3.扇形弧长计算.25(1)证明见解析;(2).【解析】试题分析:(1)连接OD,则ODAB,可知A=DOB.由DOB=2DCB得:A=2DCB;(2)由图形可知:阴影部分的面积=SBOD-扇形DOE的面积,代入相关数据即可求出.试题解析:(1)证明:连接ODAB与O相切于点D, ODAB,BDOB=90ACB=90,AB=90,A=DOBOC=OD,DOB=2DCBA=2DCB(2)在RtODB中,OD=OE,OE=BE,sinB=,B=30,DOB=60BD=OBsin60=, .考点: 1.切线的判定;2.扇形面积的计算.26(1)证明见解析;(2).【解析】试题分析:(1)连接OC,证明OCDC,即可得到DC是O的切线;(2)根据阴影部分的面积=扇形的面积-BOC的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 哺乳期解除劳动合同协议范本
- 2024年房屋补漏维修工程合同
- 2024专项资金借款的合同范本
- 员工聘用合同协议书范文2024年
- 建设工程内部承包合同书2024年
- 2024新款供货合同协议书
- 2024【流动资金外汇借贷合同】公司流动资金合同
- 2024年公司股东之间借款合同实例
- 专业房屋买卖合同模板大全
- 2024年事业单位聘用
- 民间借贷利息计算表
- 员工每日考勤表
- 2020资料江苏省建筑与装饰工程计价定额详细目录
- 变频电机参数规格-YP2
- 厦门厨余垃圾现状
- 煤矿建设工程施工技术资料
- 科技创新政策解读PPT课件
- 面试信息登记表
- 读秀学术搜索平台PPT课件
- 市质量奖中层领导座谈会准备的问题
- 优秀学生寝室奖励制度
评论
0/150
提交评论