分数的基本性质说课稿_第1页
分数的基本性质说课稿_第2页
分数的基本性质说课稿_第3页
分数的基本性质说课稿_第4页
分数的基本性质说课稿_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、分数的基本性质说课稿一、教材简析和教材处理1教材简析   分数的基本性质是人教版小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。2教材处理    以前,教师通常把分数的基本性质看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规

2、律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。分数的基本性质可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法”。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识

3、地突出思想和方法。基于以上思考,我以让学生探究发现分数基本性质的过程为教学重点,创设了一种“猜想验证反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想实验操作、验证猜想质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。二、教学程序和设计意图1迁移旧知,提出猜想(1)回忆旧知猜信封:老师手上的信封里有一个数、一道算式,我抽出其中一张,谁能猜出另一张是什么?出示:  2÷3你为什么这样猜呢?引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:被除数÷除数=   谁能说一道与2÷3商一样的

4、除法算式?学生一边说,教师一边板书算式。你为什么认为这些算式的商是一样的?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:被除数和除数同时乘或除以相同的数(零除外),商不变。设计意图:好奇是学生的天性,“猜信封”能很快抓住学生的好奇心,使他们在心理上产生悬念,并迅速切入正题,让学生回忆旧知,这样设计也是从学生已有的经验和已有的知识背景出发,找准新知的最佳切入点,为学生后面的联想和猜想巧设“孕伏”。(2)迁移猜想引导联想:看到分数与除法的关系,除法的商不变性质,你们能联想到什么?学生可能会想:除法有商不变性质,分数会不会也有什么性质呢?大胆猜想:猜一猜分数会有什么样的性质呢?请把“我的猜

5、想”这张纸拿出来,把你们猜到的写出来。(这时可能有的学生提不出猜想,怎么办?针对这样的小组教师可以提一个简单的问题启发学生:你有什么方法改变一个分数的大小吗?打开学生思维的闸门,激发学生猜想:分子分母怎样变化,分数的大小改变或不变呢?)交流猜想:汇报交流后,教师在实物投影仪上展示学生有代表性的猜想。设计意图:这种利用新旧知识的类比进行猜想的思维模式为:比较联想形成猜想。学生的实际猜想可能会观点不一,表达方式不同,或者不够完整,甚至是错误的,这都不重要,重要的是它是根据自己已有的知识经验提出的,能够自己提出问题,已经向探索迈出了可喜的一步。2实验操作,验证猜想同学们有这么多的猜想,很好!可是这些

6、猜想都对吗?要想知道猜想是否成立,我们应该做什么呢?使学生想到猜想是需要验证的。下面我们就来先验证大多数同学提出的这个猜想,投影出示:我的猜想:分数的分子和分母都乘或者除以相同的数(零除外),分数的大小不变。(1)  讨论选择。教师精心安排了两个环节,一是让学生讨论、选择一个喜欢的分数作为研究对象,二是让学生讨论、选择不同的实验材料,确定不同的验证方法,然后全班汇报。教师给每组准备了一个材料篮,里面装着计算器、钟表、数张纸、线段图、彩笔、直尺等。各小组经过热烈的讨论标新立异地选择了不同的分数作为研究对象、选择不同的材料作为实验器材,一个个跃跃欲试。学生可能会选择折纸涂色、画线段图、用

7、计算器计算、看直尺、看钟面等不同的方法去证明两个分数是否相等。设计意图:这样设计,既是为后面的实验做好准备,避免学生出现盲目行动,同时也是为学生探究方法的多元化创造条件。(2)实验记录:各组拿出实验报告,开始做实验,并记录实验结果。(3)汇报交流:分组在实物投影仪上,展示实验报告,说明验证方法。学生可能会出现多种多样的实验报告。(投影)设计意图:为了验证猜想是否正确,学生通过合作想出了多种办法,体现了探索活动的多元化、开放性和创造性,并通过展示实验报告、说明验证方法,培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。3揭示课题这时,教师用充满激情的

8、声音说:同学们,你们猜测并验证的性质就是数学中一个非常重要的性质分数的基本性质。媒体出示:分数的基本性质分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数的基本性质。4质疑反思,拓展延伸当学生沉浸在成功的快乐时,教师进一步给了学生一个交流、反思、小结的机会。学生有可能会说自己的感受,如:我可以自己猜出并证明了分数的基本性质,我很自豪。也可能会提出一些问题,如:生1:分数的分子和分母同时加或者减相同的数,分数的大小会不变吗?生2:分数的分子不变,分母变大,分数的大小会变吗?生3:分数的分子、分母同时除以一个数,得到的是小数,分数的大小相等吗?学生从各个角度提出一些问题,

9、这是多好的教学资源!教师可以把他们转化为学生运用已学方法解决问题的机会,让学生分组选择不同的问题,合作解决,再汇报交流。这时,老师也可以作为探索的一员提出问题,譬如:既然分数的基本性质与除法的商不变性质从某种意义上看是一样的,那为什么还要有一个分数的基本性质呢?使学生想到分数的基本性质有它独特的作用。分数的基本性质在生活中、数学中有什么样的作用?学生可能会说:根据分数的基本性质我可以找到无数个与2/3相等的分数,可以找到无数个等于1的分数也可能会说:比较5/6和2/3的大小,我可以用化为同分母的方法,也可以用化为同分子的方法,最后教师提出以后学习的分数计算就是分数基本性质的应用。课后作业:举几

10、个实例说明分数的基本性质在生活中、数学中可能会有哪些作用?设计意图:通过质疑反思、步步深入的交流活动,学生对分数的基本性质探究更深入,理解更完善。此时学生的视野已不尽限于分数的基本性质,而是扩展到研究分数大小变化的规律;学生提出各种疑问,教师不代替学生的思考,不急于得到圆满的答案,把问题留给学生自我解决,不仅课堂气氛活跃,而且培养了学生批判性思维能力、解决问题的能力。当然学生提出的问题不一定能当堂解决,这没有关系,因为学生勇于质疑问难,能自己提出有价值的问题,就是我们追求的目标。最后的拓展性提问,使学生思维发散,联系实际,运用规律,并自然引出以后的学习内容,激发学生不断探索新知的欲望。三、教学

11、反思与探讨1教学的预设与应变    这节课用“猜想验证反思”的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习,不仅对学生提出了挑战,而且对老师也提出了更大的挑战。因为学生有了更大的思考空间,学习方式是开放的,解决问题的方式是多元的,这就要求教师备课时能站在学生的角度思考,提高教学的预设能力。同时,学生探究的过程曲曲折折,不同的学生会遇到不同的磕磕碰碰,暴露出不同的问题,甚至许多问题教师都难以预料,这些又对教师临场应变、驾驭课堂的能力提出了更高的要求。要求教师能以人为本,根据学生不同情况采取不同的教学方式。譬如,这节课“提出猜想”是非常重要的一环,它确

12、定了研究的方向。可是如前所述,如果有些学生用类比的方法提不出猜想,怎么办?教师可以从另一个角度启发学生。相反,如果学生非常活跃,出现的猜想很多,无法在一节课中一一验证,怎么办?教师可先让学生选择其中一个最重要的猜想进行验证,学会了方法后,再分组各自选择自己喜欢的猜想验证,最后全班交流,提高了时效性。教师要充分信任学生,放手让学生做思维的先行者,不怕走弯路,不怕出问题,因为学生有了问题才更有探索的价值。如果教师善于抓住学生暴露的真实问题,恰当的组织交流和讨论,将使之成为教学的最佳资源。2目标的全面与侧重    也许,有教师会问:“如果学生花在探究的时间多了,练习的时

13、间少了,知识与技能目标能否达到?”是的,知识与技能、过程与方法、情感与态度是新课标提出的三位一体的目标,都很重要,教师必须努力实现三个目标的和谐统一,但具体到每节课还是可以根据内容的特别有所侧重。譬如,本节课,我根据分数基本性质的规律性,侧重于过程性目标的落实。因为我认为在这节课学生发现探索的过程比知识本身更重要,更有利于学生能力和方法的培养;而且,学生通过探究获得的知识是学生主动建构起来的,是学生自己经历的、真正属于他自己的知识,这远比做大量习题理解得更深刻,更有利于学生的发展 今天我向大家介绍的是数学六年级新教材第一章“分数”中的第二课时“分数的基本性质”。 在本堂课的教学设计中

14、,试图突出以下两个特点: (1)逐步引导学生实现学习方式的转变:由学生习惯于课堂上听教师讲授为主的学习方式,转变为学生自主学习探究的学习方式。教师为学生提供一个发展的空间,引导学生自己通过动手操作、观察猜测、说理验证等学习环节,运用自主探索、合作交流等学习方式,去探索,去发现,去体验,教师作为指导者给予启发、点拨。希望通过这样的设计,能逐步引导学生形成并且正在逐步形成积极思考、自主探索、相互合作、严谨求实的品质。 (2)强调知识发生的过程,加强数学思想方法的渗透:由学生熟悉的给定理、做练习的数学课模式,转变为突出知识发生过程,强调数学思想方法的数学学习过程。通过给学生设置一个具体的情境问题,激

15、起学生的求知欲望,教师引导学生探索发现其中的数学规律,并用已经学过的知识和方法去尝试说理验证。通过这样的数学学习过程,学生能亲身体验科学研究的一般过程,并从中体会科学探索的严谨品质,同时在要求学生说理验证的过程中可以启发学生建立新旧知识之间的联系,实现知识点的增长和迁移的特点。 在前一年我曾执教过六年级数学,通过这次的备课,我发现:在“分数的基本性质”这一课的教学安排中,新老教材对知识的发生和形成过程的处理方法有较大的区别。据我个人的观点,老教材在引入时有针对性的复习分数与除法的关系和除法中商不变的性质,之后通过类比来实现知识点的迁移和增长,这样的设计安排学生能较好的体会到各知识点之间的内在联

16、系,学习的数学概念有较强的系统性;新教材则更强调学生通过自身的努力,经过动手操作实践的过程,来获得亲身探究的直观感受和体验,之后再设法把感性认识上升到理性思考的高度,这样的设计安排突出的特点是学生有更多的动手操作机会,能留下强烈的直观感受,对培养学生逐步形成自主探究的良好的学习方式有很大的帮助。 教学目标: 在理解分数意义的基础上,通过操作、观察,探索分数的基本性质,体验分数性质的“探究发现说理检验”的学习过程,并会运用分数的基本性质将一个分数变化为分母(或分子)不同而大小保持不变的分数。 学会面对新问题时,敢于面对、积极探索、发现规律,并能从原有知识中找到理论依据,体会新旧知识间的内在联系,

17、通过自身的努力,实现知识点的迁移和增长。 通过数学课的学习活动,尽快熟悉新同学,逐步养成认真倾听同学意见、相互合作、相互交流、积极探索的品质。 教学过程: 一 创设情境,引出问题,引导探索,猜测规律 提出问题: 一张涂色的纸,涂色部分占这张纸的3/4。请同学们分别用这样的纸折成不同等分的图案,看看你们能发现什么结论呢? 通过教师的引导,学生们可以发现:在这些大小相同、不同等分的纸中,涂色部分分别占纸的3/4、6/8、9/12、12/16,这些分数的大小是相等的,即:3/4=6/8=9/12=12/16。 由分数3/4的分子、分母分别同乘以2、3、4可得分数6/8、9/12、12/16。而分数1

18、2/16、9/12、6/8的分子、分母分别同除以4、3、2可得分数3/4。 鼓励学生大胆猜测。 由折纸这样具体的情境问题来引发学生的思考,既能激发学生的学习兴趣,学生又能真切的体会到数学就在我们身边;安排动手操作的学习环节,之后通过观察和找规律来进行探究性学习,符合六年级学生的认知程度,能让他们体会到数学学习的乐趣。折纸这样的操作虽然看似简单,其实能反映出很多数学问题,例如通过折纸可以帮助学生体会图形的翻折对称中隐含的图形特征和边角的数量关系。我们应该尽量挖掘类似的简单有效的方法,让学生的数学学习过程手脑并用、轻松有趣。 在探索过程中,教师的引导是非常重要的一个的环节,尤其是如何设问。在此,我

19、就提出几个设问仅供大家参考。双色纸上有几个小长方形?绿色部分占这张纸的几分之几?你能将它折成几个大小相同的小长方形?绿色部分分别占了几分之几?这些分数有什么关系?这些分数之间有什么规律? 在本节课之前,学生对分数的意义、分数与除法的关系已经有了初步的认识,在说理过程中,会很自然的运用到分数和除法的关系,以及除法中商不变的性质。分数和除法的关系就是前一节课的学习内容,学生印象还比较深刻,较易联想起来;除法中商不变的性质可能学生一时之间不容易回想起来,但它和分数的基本性质相似性极高。安排这样的说理环节,可以使学生体会到新旧知识之间的内在联系,体会到学习的过程就是知识点的迁移和增长过程。 三 运用性

20、质,巩固提高 例题1 试举出几个与分数18/48大小相等的分数。 教材上是“试举出三个与分数2/5相等的分数”。做改动的目的有两个:一是学生可以从中体会分子、分母不但可以同乘一个数而且可以同除一个数;二是不明确写几个,来引发学生思考这样的分数可以写几个? 例题2 把2/5和8/60分别化成分母是15且与原分数大小相等的分数。 练习 1 在括号内填上适当的数,使等式成立: (1)9/15=3×(   )/5×(   ) (2)2×(   )/9×(   )=8/( &

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论