第10课时134课题学习 最短路径问题_第1页
第10课时134课题学习 最短路径问题_第2页
第10课时134课题学习 最短路径问题_第3页
第10课时134课题学习 最短路径问题_第4页
第10课时134课题学习 最短路径问题_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第十三章第十三章 轴对称轴对称13.4 13.4 课题学习课题学习 最短路径问题最短路径问题【学习目标学习目标】 能利用轴对称和平移的知识解决路径能利用轴对称和平移的知识解决路径最短的问题。最短的问题。【学习重、难点学习重、难点】 重难点:能利用轴对称和平移的知识重难点:能利用轴对称和平移的知识解决路径最短的问题。解决路径最短的问题。【预习导学预习导学】lPABlPABBP1 1、自学、自学1:自学课本P8586页“问题1”,掌握在直线上找一点到直线同侧两点距离和最短的问题,完成下列填空。10分钟点A、B分别是直线l异侧的两个点,如何在l上打到一个点,使得这个点到点A、点B的距离的和最短。解:

2、连接AB交直线l于点P,则根据“两点之间,线段最短”,可得AP+BP最短。则点P即为所求。如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短? 分析:如果我们能把点B移到l的另一侧B处,同时对直线l上的任一点C,都保持CBCB,就把问题转化为第题的情况了。如果直线l上的任一点到B、B的距离都相等,则说明直线l是线段BB的 垂直平分线 ,则点B与点B关于直线l对称。解:作点B关于直线l的对称点B,连接点A、B交直线l于点P, 则根据“两点之间,线段最短”,可得AP+BP最短。理由如下:在直线l上取任意一点P(不与点P重合),连接AP、BP、

3、BP,在APB中,根据两边之和大于第三边,可得ABAP+PB,而因为点B与点B关于直线l对称,则PBPB,所以AP+PBAP+PBAB,则AP+PBAP+PB。【合作探究合作探究】小组讨论交流解题思路,小组活动后,小组代表展示活动成果。小组讨论交流解题思路,小组活动后,小组代表展示活动成果。10分钟分钟abNABAMNM探究探究1 (造桥选址问题)如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直。) 分析:由于河岸宽度是固定的,因此当AM+NB最小时,AM+MN+NB最小,这样,问题就进一步转化为:当点N

4、在直线b的什么位置时,AM+NB最小?可以通过将AM沿与河岸垂直的方向平移,点M移动到点N,点A移动到点A,则AAMN,AM+NBAN+NB,当AB在一条直线上时,根据“两点之间,线段最短”,可得AN+NB的值最小,则路径AMNB最短。解:在直线a上取任意一点M,作MNb于点N,平移AM,使点M移动点N的位置,点A移动到点A的位置,连接AB交直线b于点N,过点N作MNa于点M,则路径AMNB最短。理由如下:如图,点M为直线a上任意一点(不与点M重合), 线段AN是线段AM平移得到的 AAMN,ANAM AM+MN+BNAN+AA+BN MN平行AA且MNAA MN可以看作是AA经过平移得到的

5、ANAM AM+NBAN+NB 根据两点之间线段最短,得AN+NBABAN+BN AM+NBAM+BN MNMN AM+MN+NBAM+MN+NB,即路径AMNB最短。【跟踪练习跟踪练习】学生独立确定解题思路,小组内交流,上台展示并讲解思路。学生独立确定解题思路,小组内交流,上台展示并讲解思路。5 5分钟分钟baCEAABD1、如图,某牧童在A外放牛,其家在B处,A、B到河岸的距离分别为AC、BD,且ACBD,若A到河岸CD的中点的距离为500米。牧童从A处把牛牵到河边饮水后再回家,试问在何处饮水所走的路程最短?试通过作图找出这一点;最短路程是多少?解:作点A关于直线b的对称点A,连接AB交直线b于点E,则AE+BEAE+BEAB,根据两点之间线段最短,AE+BE的路程最短。点A与点A关于直线b对称 AEAE,ACAC AECAEC BEDAEC AECBED ACEBDE90,ACBD AECBED(AAS) ECED,BEAE 点A到河岸CD的中点的距离为500米 BEAE500 AE+BE1000(米),即最短路是1000米。【点拨精讲点拨精讲】(3分钟)分钟) 1、在解决最短路径问题时,我们通常利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论