平方差公式参考_第1页
平方差公式参考_第2页
平方差公式参考_第3页
平方差公式参考_第4页
平方差公式参考_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.7 平方差公式(二)教学目标(一)教学知识点1.了解平方差公式的几何背景.2.会用面积法推导平方差公式,并能运用公式进行简单的运算.3.体会符号运算对证明猜想的作用.(二)能力训练要求1.用符号运算证明猜想,提高解决问题的能力.2.培养学生观察、归纳、概括等能力.(三)情感与价值观要求1.在拼图游戏中对平方差公式有一个直观的几何解释,体验学习数学的乐趣.2.体验符号运算对猜想的作用,享受数学符号表示运算规律的简捷美.教学重点平方差公式的几何解释和广泛的应用.教学难点准确地运用平方差公式进行简单运算,培养基本的运算技能.教学方法启发探究相结合教具准备一块大正方形纸板,剪刀.投影片四张第一张:

2、想一想,记作(§1.7.2 A)第二张:例3,记作(§ B)第三张:例4,记作(§ C)第四张:补充练习,记作(§ D)教学过程.创设问题情景,引入新课师同学们,请把自己准备好的正方形纸板拿出来,设它的边长为a.这个正方形的面积是多少?生a2.师请你用手中的剪刀从这个正方形纸板上,剪下一个边长为b的小正方形(如图123).现在我们就有了一个新的图形(如上图阴影部分),你能表示出阴影部分的面积吗?图123生剪去一个边长为b的小正方形,余下图形的面积,即阴影部分的面积为(a2b2).师你能用阴影部分的图形拼成一个长方形吗?同学们可在小组内交流讨论.(教师可巡

3、视同学们拼图的情况,了解同学们拼图的想法)生老师,我们拼出来啦.师讲给大伙听一听.生我是把剩下的图形(即上图阴影部分)先剪成两个长方形(沿上图虚线剪开),我们可以注意到,上面的大长方形宽是(ab),长是a;下面的小长方形长是(ab),宽是b.我们可以将两个长方形拼成一个更大长方形,是由于大长方形的宽和小长方形的长都是(ab),我们可以将这两个边重合,这样就拼成了一个如图124所示的图形(阴影部分),它的长和宽分别为(a+b),(ab),面积为(a+b)(ab).图124师比较上面两个图形中阴影部分的面积,你发现了什么?生这两部分面积应该是相等的,即(a+b)(ab)=a2b2.生这恰好是我们上

4、节课学过的平方差公式.生我明白了.上一节课,我们用多项式与多项式相乘的法则验证了平方差公式.今天,我们又通过拼图游戏给出平方差公式的一个几何解释,太妙了.生用拼图来验证平方差公式很直观,一剪一拼,利用面积相等就可推证.师由此我们对平方差公式有了更多的认识.这节课我们来继续学习平方差公式,也许你会发现它更“神奇”的作用.讲授新课师出示投影片(§1.7.2 A)想一想:(1)计算下列各组算式,并观察它们的特点 (2)从以上的过程中,你发现了什么规律?(3)请你用字母表示这一规律,你能说明它的正确性吗?生(1)中算式算出来的结果如下 生从上面的算式可以发现,一个自然数的平方比它相邻两数的积

5、大1.师是不是大于1的所有自然数都有这个特点呢?生我猜想是.我又找了几个例子如: 师你能用字母表示这一规律吗?生设这个自然数为a,与它相邻的两个自然数为a1,a+1,则有(a+1)(a1)=a21.生这个结论是正确的,用平方差公式即可说明.生可是,我有一个疑问,a必须是一个自然数,还必须大于2吗?(同学们惊讶,然后讨论)生a可以代表任意一个数.师很好!同学们能大胆提出问题,又勇于解决问题,值得提倡.生老师,我还有个问题,这个结论反映了数字之间的一种关系.在平时有什么用途呢?(陷入沉思)生例如:计算29×31很麻烦,我们就可以转化为(301)(30+1)=3021=9001=899.师

6、的确如此.我们在做一些数的运算时,如果能一直有这样“巧夺天工”的方法,太好了.我们不妨再做几个类似的练习.出示投影片(§ B)例3用平方差公式计算:(1)103×97 (2)118×122师我们可以发现,直接运算上面的算式很麻烦.但注意观察就会发现新的奥妙.生我发现了,103=100+3,97=1003,因此103×97=(100+3)(1003)=100009=9991.太简便了!生我观察也发现了第(2)题的“奥妙”.118=1202,122=120+2118×122=(1202)(120+2)=12024=144004=14396.生遇到类

7、似这样的题,我们就不用笔算,口算就能得出.师我们再来看一个例题(出示投影片§ C).例4计算:(1)a2(a+b)(ab)+a2b2;(2)(2x5)(2x+5)2x(2x3).分析:上面两个小题,是整式的混合运算,平方差公式的应用,能使运算简便;还需注意的是运算顺序以及结果一定要化简.解:(1)a2(a+b)(ab)+a2b2=a2(a2b2)+a2b2=a4a2b2+a2b2=a4(2)(2x5)(2x+5)2x(2x3)=(2x)252(4x26x)=4x2254x2+6x=6x25注意:在(2)小题中,2x与2x3的积算出来后,要放到括号里,因为它们是一个整体.例5公式的逆用

8、(1)(x+y)2(xy)2 (2)252242分析:逆用平方差公式可以使运算简便.解:(1)(x+y)2(xy)2=(x+y)+(xy)(x+y)(xy)=2x·2y=4xy(2)252242=(25+24)(2524)=49.随堂练习1.(课本P32)计算(1)704×696(2)(x+2y)(x2y)+(x+1)(x1)(3)x(x1)(x)(x+)(可让学生先在练习本上完成,教师巡视作业中的错误,或同桌互查互纠)解:(1)704×696=(700+4)(7004)=49000016=489984(2)(x+2y)(x2y)+(x+1)(x1)=(x24y2

9、)+(x21)=x24y2+x21=2x24y21(3)x(x1)(x)(x+)=(x2x)x2()2=x2xx2+=x2.(补充练习)出示投影片(§ D)解方程:(2x+1)(2x1)+3(x+2)(x2)=(7x+1)(x1)(先由学生试着完成)解:(2x+1)(2x1)+3(x+2)(x2)=(7x+1)(x1)(2x)21+3(x24)=7x26x14x21+3x212=7x26x16x=12 x=2.课时小结师同学们这节课一定有不少体会和收获.生我能用拼图对平方差公式进行几何解释.也就是说对平方差公式的理解又多了一个层面.生平方差公式不仅在计算整式时,可以使运算简便,而且数

10、的运算如果也能恰当地用了平方差公式,也非常神奇.生我觉得这节课我印象最深的是犯错误的地方.例如a(a+1)(a+b)(ab)一定要先算乘法,同时减号后面的积(a+b)(ab),算出来一定先放在括号里,然后再去括号.就不容易犯错误了.课后作业课本习题1.12.活动与探究计算:1990219892+1988219872+221.过程先做乘方运算,再做减法,则计算繁琐,观察算式特点,考虑逆用平方差公式.结果原式=(1990219892)+(1988219872)+(221)=(1990+1989)(19901989)+(1988+1987)(19881987)+(2+1)(21)=1990+1989

11、+1988+1987+2+1=1981045板书设计§ 平方差公式(二)一、平方差公式的几何解释:二、想一想特例归纳建立猜想用符号表示给出证明即(a+1)(a1)=a21三、例题讲解:例3 例4四、练习备课资料参考练习1.选择题(1)在下列多项式的乘法中,不能用平方差公式计算的是( )A.(ab)(ab) B.(c2d2)(d2+c2)C.(x3y3)(x3+y3) D.(mn)(m+n)(2)用平方差公式计算(x1)(x+1)(x2+1)结果正确的是( )A.x41B.x4+1C.(x1)4D.(x+1)4(3)下列各式中,结果是a236b2的是( )A.(6b+a)(6ba) B

12、.(6b+a)(6ba)C.(a+4b)(a4b) D.(6ba)(6ba)2.填空题(4)(5x+3y)·( )=25x29y2(5)(0.2x0.4y)( )=0.16y20.04x2(6)(x11y)( )=x2+121y2(7)若(7m+A)(4n+B)=16n249m2,则A= ,B= .3.计算(8)(2x2+3y)(3y2x2).(9)(p5)(p2)(p+2)(p+5).(10)(x2y+4)(x2y4)(x2y+2)·(x2y3).4.求值(11)(上海市中考题)已知x22x=2,将下式先化简,再求值(x1)2+(x+3)(x3)+(x3)(x1)5.探索规律(12)(北京市中考)观察下列顺序排列的等式:9×0+1=19×1+2=119×2+3=219×3+4=319×4+5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论