版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、(1)均是以自变量为底;)均是以自变量为底;(2)指数为常数;)指数为常数;(3)自变量前的系数为)自变量前的系数为1;(1)y=x (2)y=x2 (3)y=x3(4)y=x1/2(5)y=x-1上述问题中涉及的函数,都是形如 的函数。xy 例例1,判断下列函数哪几个是幂函数?,判断下列函数哪几个是幂函数?xyxyyxyxyxyyx0222) 7 (1) 6 ( ; 1) 5 (; 1) 4 ( ;2) 3 ( ;1) 2 ( ;31;)(答案答案(2)()(6)()(7)一般地,函数一般地,函数 叫做幂函数,其中叫做幂函数,其中x为自变量,为自变量, 为常数。为常数。xy 函数图象的画法是
2、:列表、描点、连线,那函数图象的画法是:列表、描点、连线,那么幂函数也用此法么幂函数也用此法。幂函数图象的画法幂函数图象的画法我们主要学习下列几种函数我们主要学习下列几种函数. (1) y=x (2) y=x2 (3) y=x3 (4) y=x1/2 (5) y=x-12xy xy 3xy 1 xy21xy 2xy 1 xy下一张幻灯片下一张幻灯片y=x y=x y=x 定义域定义域 值域值域 奇偶性奇偶性 单调性单调性 定点定点 公共点公共点 R R 奇奇 增增 (1,1) (0,0) R 0,+ 偶偶 x0,+ 增增 x- ,0减减 (1,1) (0,0) RR奇奇增增 (1,1) (0,
3、0) 0 , + 0 , + 非奇非偶非奇非偶 增增 (1,1) (0,0) x| |xR,x0 y| |yR,y0 奇奇 x0,+ 减减 x-,0 减减 (1,1) xy121xy 图图 像像(1,1) , (0,0)(1,1)(1,1)中学教育在线结合以上特征得幂函数的性质如下结合以上特征得幂函数的性质如下:l0时,l0时,l是偶数,幂函数是偶函数是偶数,幂函数是偶函数, , 是奇数,幂函数是奇函是奇数,幂函数是奇函数数. .(1)(1)图象都经过点(图象都经过点(1 1,1 1););(2)(2)函数在函数在 是减函数是减函数; ;(3)(3)在第一象限内在第一象限内, ,图象向上与图象
4、向上与Y Y轴无限轴无限 地接近地接近, ,向右与向右与X X轴无限地接近轴无限地接近. .,0 x(1)(1)图象都经过点(图象都经过点(0 0,0 0)和()和(1 1,1 1)(2)(2)函数在函数在 是增函数是增函数. .,0 xl所有的幂函数在所有的幂函数在 都有定义都有定义, ,并且图象都通过点并且图象都通过点(1,1).(1,1).,0 x例例1 比较下列各组数的大小比较下列各组数的大小25251 . 3 3 )1( 和和8787)91( 8 )2(和和5 . 14 . 15 3 )3(和和 练习比较下列各组数的大小练习比较下列各组数的大小31317 . 1 1.5 )1(和和3
5、232)53( )32( )2( 和和32528 . 5 1 . 4 )3(和和(1) 若能化为同若能化为同指数指数,则用幂函数的单调,则用幂函数的单调 性比较两个数的大小;性比较两个数的大小;(2) 若能化为同若能化为同底数底数,则用指数函数的单,则用指数函数的单 调性比较两个数的大小;调性比较两个数的大小;(3)当不能直接进行比较时,可在两个数当不能直接进行比较时,可在两个数 中间插入一个中间插入一个中间数中间数,间接比较上述,间接比较上述 两个数的大小两个数的大小.利用幂函数的增减性比较两个数的大小利用幂函数的增减性比较两个数的大小. 解解:设设 由题意得由题意得xxf)(总结总结: 理解并掌握幂函数的定义。理解并掌握幂函数的定义。例例1: 已知幂函数的图象过点已知幂函数的图象过点 ,试求出此函数试求出此函数的解析式的解析式.)2,2(22 21所以所以21)(xxf所以所以 证明证明: 任取任取x1 ,x2 0,+),且且x1 x2 xxf例例2 证明幂函数证明幂函数 在在0,+)上是增函数)上是增函数. 2121xxxfxf212121)(xxxxxx2121xxxx0, 0,0212121xx
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版XX污水厂污水回用技术研究与开发协议3篇
- 2024年河南推拿职业学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 2024年阜新市海州区人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年河北女子职业技术学院高职单招职业适应性测试历年参考题库含答案解析
- 2024年江西信息应用职业技术学院高职单招语文历年参考题库含答案解析
- 2024年江苏卫生健康职业学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 2024年民办合肥滨湖职业技术学院高职单招职业适应性测试历年参考题库含答案解析
- 2024年梧州职业学院高职单招数学历年参考题库含答案解析
- 2024年昆明幼儿师范高等专科学校高职单招职业适应性测试历年参考题库含答案解析
- (高清版)DB36 792-2014 建筑陶瓷单位产品能源消耗限额
- 医疗机构规章制度目录
- 中国地图素材课件
- 中药学知识归纳总结
- 弯道超车就趁寒假!-寒假指引主题班会课件
- 肠梗阻小讲课
- 电子表格表格会计记账凭证模板
- 某酒店散客预订单
- GB/T 43269-2023信息安全技术网络安全应急能力评估准则
- 天坛西班牙语导游词
- 定制衣柜售后质保合同范本
- 闽教版小学英语阅读理解10篇
评论
0/150
提交评论