




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、十字相乘法及分组分解法【学习目标】1. 熟练掌握首项系数为1的形如型的二次三项式的因式分解.2. 基础较好的同学可进一步掌握首项系数非1的简单的整系数二次三项式的因式分解.3. 对于再学有余力的学生可进一步掌握分数系数;实数系数;字母系数的二次三项式的因式分解.(但应控制好难度)4. 掌握好简单的分组分解法.【要点梳理】要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式,若存在 ,则要点诠释:(1)在对分解因式时,要先从常数项的正、负入手,若,则同号(若,则异号),然后依据一次项系数的正负再确定的符号(2)若中的为整数时,要先将分解成两个整数的
2、积(要考虑到分解的各种可能),然后看这两个整数之和能否等于,直到凑对为止.要点二、首项系数不为1的十字相乘法在二次三项式(0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与之积,即.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方
3、法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解分组分解法.即先对题目进行分组,然后再分解因式.要点诠释:分组分解法分解因式常用的思路有:方法分类分组方法特点分组分解法四项二项、二项按字母分组按系数分组符合公式的两项分组三项、一项先完全平方公式后平方差公式五项三项、二项各组之间有公因式六项三项、三项二项、二项、二项各组之间有公因式三项、二项、一项可化为二次三项式要点四、添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形.添、拆项法分解因式需要一定的技巧性,在仔
4、细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法.【典型例题】类型一、十字相乘法1、分解因式: 【答案与解析】解:原式【总结升华】将视作常数,就以为主元十字相乘可解决.举一反三:【变式】分解因式:【答案】解:原式2、分解因式:【思路点拨】该题可以先将看作一个整体进行十字相乘法分解,接着再套用一次十字相乘.【答案与解析】解: 因为 所以:原式2 12【总结升华】十字相乘法对于二次
5、三项式的分解因式十分方便,大家一定要熟练掌握.举一反三:【变式】分解因式:;【答案】解:原式3、分解下列因式(1) (2)【答案与解析】 解:(1)令,则原式(2)令,原式【总结升华】此两道小题结构都非常有特点,欲分解都必须先拆开,再仔细观察每个式子中都存在大量相同的因式整体性想法.整体性思路又称换元法,这与我们生活中搬家有些类似,要先将一些碎东西找包,会省许多事.类型二、分组分解法4、分解因式: 【思路点拨】对完全平方公式熟悉的同学,一看见该式,首先想到的肯定是式子中前三项恰好构成,第4、5项.【答案与解析】解:原式【总结升华】熟记公式在复杂背景下识别公式架构很重要;我们前面练习中无论公式、
6、配方、十字相乘一般都只涉及单一字母,其实代数式学习是一个结构的学习,其中任一个字母均可被一个复杂代数式来替代,故有时要有一些整体性认识的想法.举一反三:【变式1】分解因式:(1)(2)(3)【答案】解:(1)原式;(2)原式;(3)原式.【变式2】分解因式:【答案】解:类型三、拆项或添项分解因式5、阅读理解:对于二次三项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式,但对于二次三项式x2+2ax8a2,就不能直接用公式法了我们可以在二次三项式x2+2ax8a2中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变,于是又:x2+2ax8a2=x2+2ax8a2+
7、a2a2=(x2+2ax+a2)8a2a2=(x+a)29a2=(x+a)+3a(x+a)3=(x+4a)(x2a)像这样把二次三项式分解因式的方法叫做添(拆)项法(1)请认真阅读以上的添(拆)项法,并用上述方法将二次三项式:x2+2ax3a2分解因式(2)直接填空:请用上述的添项法将方程的x24xy+3y2=0化为(x )(x )=0并直接写出y与x的关系式(满足xy0,且xy)(3)先化简,再利用(2)中y与x的关系式求值【答案与解析】解:(1)x2+2ax3a2=x2+2ax+a24a2=(x+a)24a2=(x+a+2a)(x+a2a)=(x+3a)(xa);(2)x24xy+3y2=x24xy+4y2y2=(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《捞铁牛》教学反思
- 双人签合同范本
- 《小人国》中班教案
- 包装印刷服务合同范本
- 厂房墙面翻新施工合同范本
- 个人转让物品合同范本模板
- 出售软件 合同范本
- 各种货车出租合同范本
- 印刷设备采购合同范本
- 单位采购合同购销合同范例
- 2022年新高考I卷读后续写David's run公开课课件-高三英语一轮复习
- 《语感与语言习得一:积累与探索》教案- 2023-2024学年高教版(2023)中职语文基础模块上册
- 2 让我们的家更美好 第一课时 担当家庭责任(教学设计)2023-2024学年统编版道德与法治五年级下册
- 2024年中国电动助力汽车转向系统(EPS)行业市场现状、前景分析研究报告
- 2023年吉林省中考满分作文《成功源于勤奋》
- 2024-2030年中国后量子密码学行业运营动态及投资策略分析报告
- 2024年英德中小学教师招聘真题
- 2024年车险理赔保险知识试题库(附含答案)
- 食品安全追溯管理体系制度
- 2024-2025学年新教材高中语文 第六单元 13.2 装在套子里的人教案 部编版必修下册
- JBT 14732-2024《中碳和中碳合金钢滚珠丝杠热处理技术要求》
评论
0/150
提交评论