版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第十章模糊图像变换编码 第十章模糊图像变换编码n 进行图像编码的原因n 图像编码的几种方法n 模糊图像变换编码 1.自适应余弦编码 2.自适应FAM系统 3.仿真 4.结论与启示模 糊 图 像 变 换 编 码n对图像进行编码的必要性: 由于图像的数据量很大 ,对图像的存储, 处理和传输带来了不便。在数字图象传播中, 增加图象的精度须增加带宽,对信道能力的 限制促进了图象压缩技术。(如高清晰度数字 电视,网络电视等) 例如:低分辨率,TV质量,彩色电视图像: 512*512大小,8比特/像素,三色:约为 这对于传输来说非常耗时,是不能被接受的。 bit6106 模 糊 图 像 变 换 编 码 对
2、图像进行编码的可能性: 由于图象间数据存在冗余使图象压缩成为可能。 冗余包括:编码冗余,像素间冗余,心里视觉冗余 返回图 像 变 换 编 码 的 方 法 图象的基本压缩编码方法分为: 1.预测编码对应空域 (如DPCM差值脉冲码调制法)。 原图像 信道 量化器预测器编码器+-+图 像 变 换 编 码 的 方 法 .变换编码对应频域( 如DCT,小波变换) 小波变换的优点:(1)低熵性,小波系数的稀疏分布使变换后熵变低。(2)多分辨性,可以非常好的刻画信号的非平稳特征,如边缘,尖峰,断点。(3)去相关性,噪声在变换后趋于白化,有利于去噪。 图 像 变 换 编 码 的 方 法 .其他方法分形编码,
3、矢量量化等等。 分形几何学是曼德勃罗特在20世纪70年代创立的,“分形fractal”一词含有不规则破碎的意思。分形编码也是一种很有前途的编码方法,它是一种基于自相似性的叠代方法。对于特殊的图像,它可以达到10000:1的压缩率。由于实际图像并不都是具有自相似性,但我们可以利用图像中的局部相似性来进行压缩。其缺点是:叠代时间较长,不能对图像实时处理。 如果把分形与其他方法,如小波方法等结合起来,是非常有前途的方法。自 相 似 性 叠 代 实 例 图4.1 科克曲线的形成 图4.2 谢尔宾斯基三角形的演变分 形 图 像 实 例 图1.蕨类植物 图2.Mandelbrot集 图3. 分形风景返回模
4、模 糊糊 图图 像像 的的 变变 换换 编编 码码步骤:1.图像划分为8x8的子图像并计算子图像的DCT。 2.计算子图的AC能量及AC的低频能量。 3.用神经网络FAM系统训练的模糊规则 划分子图的压缩率。 4.根据分配的压缩率进行编码。 返回 图 像 的 自 适 应 余 弦 编 码X x1 FIGURE 10.1 自适应余弦编码图 DCTSubimageClassifictionCodingchannelDecoding1DCT图 像 的 自 适 应 余 弦 编 码NnnNumnmxNvcucvuXNmNn2) 12(cos2) 12(cos),()()(4),(10102NnnNumNM
5、XvcucnmxNmNn2) 12 (cos2) 12 (cos),()()(),(1010其中c(0)=1/2,c(k)=1 for k=1,2.N-1二维离散余弦变换的定义式:二维离散余弦变换的定义式:图 像 的 自 适 应 余 弦 编 码Dc能量和能量和Ac能量的定义:能量的定义:nDC energy =nAC energy = DC对应于图像的主要能量 AC对应于图像的边缘和噪声 所以,对于AC能量大的子图像我们分配较多的比特数,反之,分配较少的比特数,从而达到压缩的目的。 )0 , 0(2XuvXvuX)0 , 0(),(22图 像 的 自 适 应 余 弦 编 码 自适应余弦变换编码
6、chen,1977,陈系统根据子图像的AC能量划分为4类,并分别赋予不同的比特/像素率。陈系统的平均压缩率少于1bit/pixel rate.这种方法能得到高质量的图像压缩。图 像 的 自 适 应 余 弦 编 码n我们使用信噪比来评估图像的质量: dBSNRr)255(log102210其中 表示从建误差的随机样本方差2r),(),(),(nmxnmxnmr1010222),(1NmNnrnmrN图 像 的 自 适 应 余 弦 编 码n我们定义平均编码的bits/pixel R: 返回pixelbitsNBRc/2cB 表示用于图像编码的总比特数,N表示图像的大小。自 适 应 FAM 系 统n
7、自适应FAM系统通过训练数据来产生FAM规则。 这里的输入变量有两个:T和L 。 T代表整个AC的能量,并且分为4个等级:BG,MD,SL和VS。 L代表AC的低频能量,分为2个等级:SM和LG。 输出变量为B: 分为4个等级: BG,MD,SL和VS。 自 适 应 FAM 系 统T和L的表示式:)0 , 0(),(1010XvuXTmumv 12/012/0)0 , 0(),(mumvXvuXL Figure 10.2 Fuzzy-set values of fuzzy variables T,L,and B. 自 适 应 FAM 系 统量 化 隶 属 度 函 数 的 选 择n利用陈系统产生
8、的训练数据,来估计AFAM规则:n通过下式来计算AC的平均能量:n并以此来确定隶属度函数的区间。),(iiiBLT641641641641iijjiijjLLTT积空间聚类(Product-Space Clustering) 估计FAM规则 在输入输出的积空间中( ),使用竞争学习的自适应量化聚类方法来进行积空间的聚类。随机竞争系统是自适应矢量量化(AVQ)系统。而模糊规则 属于积空间 。根据隶属度函数,把T(0T100)分为四个非重叠的区间0,8.76,8.76,16.19,16.19,27.94,27.94,100。这四个区间对应于模糊集的值 VS,SL,MD,BG。把L(0L100)分为
9、两个非重叠的区间0,9.88, 9.88,100,对应于SM,LG。把B(0B4.5)分为四个非重叠的区间0,8.76,8.76,16.19,16.19,27.94,27.94,100对应于HI,MH,ML,LO。 nR),(iiiBLT3R积 空 间 聚 类 估 计 FAM 规 则n由陈系统产生的输入输出数据,经过基于微分竞争学习的分类,我们的到了上面规则的1,2,6,7,8条,根据经验补上其中的3,4,5条使规则完整。积 空 间 聚 类 估 计 FAM 规 则For example,FAM rule1(BG,LG;HI)represents the association: IF the
10、total AC power T is BG AND the low-frequency AC power L is LG, THEN encode the subimage with the class B corresponding to HI 微分竞争学习n在第四章中我们知道,微分竞争学习的法则:只有在竞争获胜时才改变其权值: 这里 和为实现离散,我们使用DCL算法作为随机微分方程: if the jth neuron wins if the jth neuron loses )()(jjjjmxSySm。)(),.()(1xSxSxSn),.(1njjjmmm )() 1()()()(
11、)() 1(tmtmtmtxtyctmtmiijjtjj微 分 竞 争 学 习上式中 定义为: 为遗忘系数。例如, =0.1(1-t/M),M为训练样本数。输出: 返回 )(tyj)() 1(sgn)(tytytyjjjtctcnipkkjkijijjwtytmtxtyty)()()()() 1( 仿 真 文中使用Lena 图像的训练数据进行估计的FAM系统对F-16战斗机图像进行编码,结果表明其性能依然很好,其压缩达到了 0.5 bits / pixel。 文中比较了陈系统和FAM系统的性能,FAM系统拥有较好的信噪比和压缩比。 仿 真 FAM和陈系统的性能对比: 返回 SNRSNR(db)
12、(db) R RComp.Comp.ratioratioSNRSNR(db)(db) R RComp.Comp.ratioratio LennaLennaFAMFAM ChenChen28.2428.24 28.1028.100.9630.963 0.9760.9768.3:18.3:1 8.2:18.2:125.7225.72 25.6825.680.5040.504 0.5280.52815.9:115.9:1 15.1:115.1:1 F-16F-16FAMFAM ChenChen26.3526.35 26.0226.020.8980.898 0.9760.9768.9:18.9:1 8.2:18.2:124.562
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版城市物流配送承包合同3篇
- 电子产品制造安全用品规定
- 2025个人租房合同范本标准版
- 食品安全厨师聘用合同模板
- 乙供物资供应商质量管理体系
- 2025版商铺转租与新能源技术应用合同范本3篇
- 2025版风电项目用地租赁合同3篇
- 2025版虫草保健品原料供应合同2篇
- 2025版冷链物流快递业务承包管理合同3篇
- 2024年货物买卖合同标的及权益说明
- (八省联考)云南省2025年普通高校招生适应性测试 物理试卷(含答案解析)
- 【8地RJ期末】安徽省合肥市肥西县2023-2024学年八年级上学期期末考试地理试题(含解析)
- 2024年副班主任工作总结(3篇)
- 课题申报书:古滇青铜文化基因图谱构建及活态深化研究
- GB/T 44979-2024智慧城市基础设施紧凑型城市智慧交通
- 统编版2024-2025学年第一学期四年级语文期末学业质量监测试卷(含答案)
- 北师大版七年级上册数学期末考试试题附答案
- 2024年城乡学校结对帮扶工作总结范例(3篇)
- 房地产法律风险防范手册
- 理论力学知到智慧树章节测试课后答案2024年秋浙江大学
- 小红书食用农产品承诺书示例
评论
0/150
提交评论