![一元二次方程根的分布问题恒成立问题_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-2/23/6e193893-50a9-402f-96de-55323796ecbf/6e193893-50a9-402f-96de-55323796ecbf1.gif)
![一元二次方程根的分布问题恒成立问题_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-2/23/6e193893-50a9-402f-96de-55323796ecbf/6e193893-50a9-402f-96de-55323796ecbf2.gif)
![一元二次方程根的分布问题恒成立问题_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-2/23/6e193893-50a9-402f-96de-55323796ecbf/6e193893-50a9-402f-96de-55323796ecbf3.gif)
![一元二次方程根的分布问题恒成立问题_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-2/23/6e193893-50a9-402f-96de-55323796ecbf/6e193893-50a9-402f-96de-55323796ecbf4.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、 知识要点1、 利用与韦达定理研究的根的分布1)方程有两个正根 2)方程两根一正一负 3)方程有两个负根 2、 借助函数图像研究的根的分布设一元二次方程()的两实根为,且。为常数。则一元二次方程根的分布(即,相对于的位置)有以下若干定理。【定理1】【定理2】【定理3】【定理4】有且仅有(或)【定理5】或【定理6】,则或二、典型例题例1若一元二次方程有两个正根,求的取值范围。分析:利用与韦达定理研究的根的分布例2 在何范围内取值,一元二次方程有一个正根和一个负根?分析:利用例3 若一元二次方程有一根为零,则另一根是正根还是负根?分析:把x=0代入,得k=3,则可算出两根之和为5/3>0
2、,所以另一根为正例4.方程x2+2px+1=0有一个根大于1,一个根小于1,求p的取值范围分析:利用例5.若关于x的方程x2+(k-2)x+2k-1=0的两实根中,一根在0和1之间,另一根在1和2之间,求实数k的取值范围利用零点存在定理练习1.方程mx2+2(m+1)x+m+3=0仅有一个负根,求m的取值范围练习2若关于x的方程kx2-(2k+1)x-3=0在(-1,1)和(1,3)内各有一个实根,求k的取值范围不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法)1).恒成立问题若不等式在区间上恒成立,则等价于在区间上若不等式在区间上恒成立,则等价于在区间上如(1)设实数满足,当时,的取值范围是_(答:);(2)不等式对一切实数恒成立,求实数的取值范围_(答:);(3)若不等式对满足的所有都成立,则的取值范围_(答:(,);(4)若不等式对于任意正整数恒成立,则实数的取值范围是_(答:);(5)若不等式对的所有实数都成立,求的取值范围.(答:)2). 能成立问题若在区间上存在实数使不等式成立,则等价于在区间上;若在区间上存在实数使不等式成立,则等价于在区间上的.如已知不等式在实数集上的解集不是空集,求实数的取值范围_(答:)3). 恰成立问题若不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球及中国中置电机自行车行业头部企业市场占有率及排名调研报告
- 2025年全球及中国PTZ电子体积校正器行业头部企业市场占有率及排名调研报告
- 2025年全球及中国军用飞行器模拟器行业头部企业市场占有率及排名调研报告
- 2025年全球及中国工业木锯机行业头部企业市场占有率及排名调研报告
- 期末测试卷01【考试范围:6-10单元】(原卷版)
- 2025国际商业代理合同详细版样本
- 担保合同范文集锦年
- 健身房私教合同范文
- 电力设备采购合同模板
- 2025XL数字地震仪器租赁合同
- 《造血干细胞移植护理》课件
- 课题申报参考:全龄友好视角下的社区语言景观评估及空间优化研究
- 中央2025年公安部部分直属事业单位招聘84人笔试历年参考题库附带答案详解
- 五年级下册语文四大名著常考知识点
- 2025年1月日历表(含农历-周数-方便记事备忘)
- 2024年同等学力人员申请硕士学位英语试卷与参考答案
- 临床用血管理培训
- 工业自动化生产线操作手册
- 《走进神奇》说课稿
- 2024年内蒙古中考语文试卷五套合卷附答案
- 五年级下册语文教案 学习双重否定句 部编版
评论
0/150
提交评论