高考数学(文数)一轮复习课时练习:2.9《函数模型及应用》(学生版)_第1页
高考数学(文数)一轮复习课时练习:2.9《函数模型及应用》(学生版)_第2页
高考数学(文数)一轮复习课时练习:2.9《函数模型及应用》(学生版)_第3页
高考数学(文数)一轮复习课时练习:2.9《函数模型及应用》(学生版)_第4页
高考数学(文数)一轮复习课时练习:2.9《函数模型及应用》(学生版)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、课时规范练A组基础对点练1下列函数中随x的增大而增长速度最快的是()Av·exBv100ln xCvx100 Dv100×2x2用长度为24(单位:米)的材料围成一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为()A3米 B4米C6米 D12米3已知A,B两地相距150千米,某人开汽车以60千米/小时的速度从A地到达B地,在B地停留1小时后再以50千米/小时的速度返回A地,把汽车离开A地的距离x表示为时间t(小时)的函数表达式是()Ax60tBx60t50tCxDx4在某个物理实验中,测量得变量x和变量y的几组数据,如下表:x0.500.992.013.98y

2、0.990.010.982.00则对x,y最适合的拟合函数是()Ay2x Byx21Cy2x2 Dylog2x5某商场销售A型商品,已知该商品的进价是每件3元,且销售单价与日均销售量的关系如表所示:销售单价/元45678910日均销售量/件400360320280240200160请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为()A4 B5.5C8.5 D106某种动物繁殖量y只与时间x年的关系为yalog3(x1),设这种动物第2年有100只,到第8年它们将发展到()A200只 B300只C400只 D500只7.某厂有许多形状为直角梯形的铁皮边角料,如

3、图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为()Ax15,y12 Bx12,y15Cx14,y10 Dx10,y148世界人口在过去40年翻了一番,则每年人口平均增长率约是(参考数据lg 20.301 0,100.007 51.017)()A1.5% B1.6%C1.7% D1.8%9当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了若某死亡生物体内的碳14用该放射性探测器探测不到,则它

4、经过的“半衰期”个数至少是()A8 B9C10 D1110某大型民企为激励创新,计划逐年加大研发资金投入若该民企2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.120.05,lg 1.30.11,lg 20.30)()A2017年 B2018年C2019年 D2020年11某种病毒每经过30分钟由1个病毒可分裂成2个病毒,经过x小时后,病毒个数y与时间x(小时)的函数关系式为_,经过5小时,1个病毒能分裂成_个12某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租

5、0元一个月的本地网内通话时间t(分钟)与电话费S(元)的函数关系如图所示,当通话150分钟时,这两种方式的电话费相差_13某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等若一月份至十月份销售总额至少达7 000万元,则x的最小值是_14某市用37辆汽车往灾区运送一批救灾物资,假设以v km/h的速度直达灾区,已知某市到灾区公路线长400 km,为了安全起见,两辆汽车的间距不得小于()2km,那么这批物资全部到达灾区的最少时间是_h(车身长度不计)B组能力提升练1.

6、某市近郊有一块大约500米×500米的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,要建设如图所示的一个总面积为3 000平方米的矩形场地,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米(1)分别用x表示y和S的函数关系式,并给出定义域;(2)怎样设计能使S取得最大值,并求出最大值2为了降低能源损耗,某体育馆的外墙需要建造隔热层体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元该建筑物每年的能源消耗费用C万元与隔热层厚度x厘米满足关系:C(x)(0x10,k为常数),

7、若不建隔热层,每年能源消耗费用为8万元设f(x)为隔热层建造费用与20年的能源消耗费用之和(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小?并求最小值3某工厂生产某种产品,每日的成本C(单位:万元)与日产量x(单位:吨)满足函数关系式C3x,每日的销售额S(单位:万元)与日产量x的函数关系式S已知每日的利润LSC,且当x2时,L3.(1)求k的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值4随着中国一带一路的深入发展,中国某陶瓷厂为了适应发展,制定了以下生产计划,每天生产陶瓷的固定成本为14 000元,每生产一件产品,成本增加210元已知该产品的日销售量f(x)(单位:件)与产量x(单位:件)之间的关系式为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论