微分中值定理在证明等式与不等式中的一些应用_第1页
微分中值定理在证明等式与不等式中的一些应用_第2页
微分中值定理在证明等式与不等式中的一些应用_第3页
微分中值定理在证明等式与不等式中的一些应用_第4页
微分中值定理在证明等式与不等式中的一些应用_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、微分中值定理在证明等式与不等式中的一些应用 摘 要 :不等式在初等数学中是最基本的也是最重要的内容之一,微分中值定理也是数学分析中最重要的定理之一.本文采用举例的方式归纳了微分中值定理在不等式证明中的几种常见方法和技巧,总结了微分中值定理在不等式证明中的基本思想和方法。从这些思想和方法中我们可以解决类似的很多问题,对提高证明题和解决问题的能力有很大帮助。关键词:微分中值定理;等式;不等式;证明;应用The Application of Mean Value Theorem in Proving Equalities and InequalitiesAbstract: Inequalities

2、is one of the most basic contents in Elementary Mathematics. Mean Value Theorem which is widely used in solving mathematical problems, is one of the most important theorem in Mathematical Analysis, and is also the important tool of research math problem. This paper summarized some common kinds of me

3、thods and skills of application of Mean Value Theorem in proof of Inequalities by exemplification, and highlighted the elementary thought and method, contributed immensely to improving the capability of certifying. Key words: Mean Value Theorem; Inequalities; Proof; Application0 引言高等数学中, 等式、不等式的证明占有

4、重要的一席之地,与一些计算及应用题相比,等式、不等式的证明对数学研究者来说一直是难点,主要是在证明的思路或者在函数的构造上有难度。在研究等式、不等式证明的过程中既发展了学者的数学思维也培养了逻辑思维方面的能力。等式、不等式的证明方法很多,本文归纳出了几种利用微分中值定理来证明等式、不等式的常用方法和技巧。1 预备知识1.1 拉格朗日中值定理若函数满足: 在闭区间 连续; 在开区间内可导. 则在 内至少存在一点,使。 拉格朗日中值定理也称中值公式或拉格朗日公式,它也经常用另一种形式表示,由于是在 内的一个中值点,也可表示成 的形式, 于是定理的结论就可改为在 中至少存在一个值, 使或。拉格朗日中

5、值定理反映的是函数或函数增量和可导函数的一阶导数符号之间的一种关系,它都是以等式形式存在的,我们要学会观察拉格朗日中值公式,从而要灵活的理解拉格朗日中值定理在证明不等式中的应用。1.2 柯西中值定理设函数和 满足: 在上都连续;在 内都可导; 和 不同时为零; ,则存在,使得: 柯西中值定理反映了两个函数或两个函数增量与它们一阶导数之间的关系,当一个函数取自变量自身时,它就是拉格朗日中值定理,所以柯西中值定理和拉格朗日中值定理之间有着必然的联系,其转化过程非常巧妙,在研究不等式时,要看清题意,分析题给的条件,确定符合条件所对应的中值定理。 2 微分中值定理在不等式证明中的应用例1 证明: 当时

6、, 分析:要证不等式即由柯西中值定理有即只要证明,亦即2.1 拉格朗日中值定理在不等式证明中的应用利用拉格朗日中值定理(若经过简单变形, 不等式的一端可写要证明的命题是区间内至少有一点大于(或小于) 零, 可以尝试使用拉格朗日中值定理。例2 设, 证明:分析: 观察命题结构,可以构造函数,又因为,这可以分区间应用拉格朗日中值定理。在应用拉格朗日中值定理到:=,又由于.证明也就迎刃而解了。分析过程我们要学会思考、联想和知识迁移。证明:设,则 对于在.由拉格朗日定理知: 即 由于 又 所以 在应用引理1时,可以先构建辅助函数,并确定使用拉格朗日中值定理的区间,对在上使用拉格朗日中值定理,再根据与之

7、间的关系,对拉格朗日公式加强不等式。对于不能直接应用定理证明的.在利用拉格朗日中值定理进行问题证明时, 。主要是构建辅助函数,先结论出发,观察问题特征,分析问题可能用到的辅助函数,最后对问题作相应的变形,这是构造辅助函数关键,有了辅助函数就可以直接应用中值定理得出结论。例3 设,均在上连续,证明: 分析:在证明不等式过程中,首先要观察其结果的特征,再分析可能要用的辅助函数,然后相应的改变命题的形式,这是构造辅助函数关键.我们经常会将结果变形处理,如将上式变型等价为:,于是我们先考虑左边,可以令其为函数:, 通过观察我们知道在上连续,在内可导,进而对其求导,结果为 :恒成立 ,这样的一阶导数都大

8、于0,再通过转换很快得到结果。积分不等式证明除用传统证法外,应用微分中值定理去研究,入手会很方便的。证明:由分析知 (1)由题意知在上连续,在内可导,则对进行求导有= (2)所以在内,恒成立。由以上条件可知,满足拉格朗日中值定理,则存在一点使得: (3)由(1)(2)式知:,又因为,由(3)式得 (4)所以 (5)由(4),(5)式得: 即 . 关于拉格朗日中值定理的证明及应用有许多专门的研究,利用拉格朗日中值定理证明不等式有许多方便之处.在利用拉格朗日中值定理在证明不等式,我们要具备构造函数的思想。有些不能直接应用定理进行证明,我们可以用合适的方法,构造其函数框架,利用拉格朗日中值定理解决问

9、题时,需要构造辅助函数,是证明的关键。所以我们要学会去构建辅助函数。 例4 设,当时,求证:-.分析:由题意可知,通过变型,不等式可以等价为:,当时结论显然成立,当时,可以选取两区间或,在该区间上可以构造函数 ,则对其求导为:,所以,再结合题意,由于条件满足柯西中值定理,则就可以利用柯西中值定理进行证明了。证明:由柯西中值定理得 , 或,即 当 时,即 又,故,即 -当时,即 , 又 , 故即 - .在应用柯西中值定理时,先可以构造两个辅助函数和,并确定它们使用柯西中值定理的区间;对与在上施用柯西中值定理;再利用与的关系,对柯西公式进行加强不等式。通过分析我们可以知道:柯西中值定理是拉格朗日中

10、值定理的推广, 其主要是构造好有力的函数,对应好定理的条件和区间即可。例5 设,证明:分析:观察命题,可以将命题变型,那么原不等式可以等价于 ,不等式左边可看是函数=与在区间上的改变量的商,所以本题可以用柯西中值定理去证明。证明:原不等式等价于<,取, , 显然和在闭区上满足柯西中值定理条件,存在,则 ,即 =因为, 所以, , 从而 或 -因此 -,即 .经上叙述, 我们可以看到:研究两个函数的变量关系时,我们就会想到柯西中值定理,在用柯西中值定理证明不等式命题时,关键是要在对结果进行整理变形的基础上, 找出满足柯西中值定理的那两个函数。综上可知,在应用柯西中值定理时,导数发挥了很大的

11、作用了,特别是研究函数在区间上的整体形态时,考虑应用柯西中值定理是最合适的,且它有着广泛的应用性。在拉格朗日中值定理中,如果 ,则变成罗尔定理;在柯西中值定理中,如果,则变成拉格朗日定理。因此,拉格朗日中值定理是罗尔定理的延伸推广,柯西中值定理是拉格朗日定理的延伸推广。在不等式证明中,它们各具特色,为解题提供有力工具。2.2利用微分中值定理证明等式与恒等式在证明一些出现导数的等式时,进行适当的变形后,考虑应用微分中值定理加以证明.还有,就是我们在证明一些与中值定理有关的题目时,构造辅助函数是解决问题的关键。在证明题中巧妙选用和构造辅助函数,进行系统分析和阐述,从而证明相关结论。我们一下面一个例

12、题来讲解。例:设函数在0, 1上连续,在(0, 1)内可导,且, 试证 (1) 存在,使; (2) 对任意实数,必存在,使得 分析 (1) 欲证等式可写成则只需设在上存在零点. (2) 欲证等式可改写成 由于,则只需取辅助函数,再对在上用罗尔定理. 证 (1) ,因在上连续,故由零点定理,存在,使得 (2) 令,因在上连续,在内可导,且F(0) = 0 , ,故由罗尔定理,存在,使得 由于,故得例:设,在连续可导,则存在使得.证明 令则,且,在上连续在内可导根据柯西定理,存在使得 即,.3. 结束语当前, 微分中值定理证明等式、不等式的运用已经成为数学研究领域中一个被关注的研究课题,受到了学者

13、的普遍重视。作为高等数学中的重要内容,它具有非凡的研究价值,有助于常量数学以及变量数学之间的相互过渡。相较于初等数学中的常用数学方法,利用微分中值定理证明等式、不等式可以增强解题的直观形象性,从而能起到化解难度、增加成功率等作用,对等式、不等式的解题过程和解题思路,有了更加深刻的理解,分析问题和解决问题的能力会逐渐提高,在做数学分析问题研究时,游刃有余。所以微分中值定理在等式、不等式证明中的应用是非常广泛的,研究它也是非常有必要的!参考文献:1 复旦大学数学系. 数学分析(2 版)M . 北京:高等教育出版社,1985:174.2 华东师范大学数学系.数学分析(第三版)M .北京:高等教育出版社,1999:125-1263 王繁. 不等式证明初探J. 成都教育学院学报,2005.06,19(6):115-1164 蒙诗德.数学分析中证明不等式的常用方法J. 自然科学报,2009.09,25(9):205 车茂林,黄婷,彭杰. Cauchy中值定理推广及应用J. 内江师范学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论