版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2006年数学一试题分析、详解和评注一、 填空题:16小题,每小题4分,共24分. 把答案填在题中横线上.(1) 【分析】 本题为未定式极限的求解,利用等价无穷小代换即可.【详解】 . (2) 微分方程的通解是【分析】本方程为可分离变量型,先分离变量,然后两边积分即可【详解】 原方程等价为,两边积分得,整理得.()(3)设是锥面的下侧,则.【分析】本题不是封闭曲面,首先想到加一曲面:,取上侧,使构成封闭曲面,然后利用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】 设:,取上侧,则 .而,.所以.(4)点到平面的距离.【分析】本题直接利用点到平面距离公式进行计算即可.其中为
2、点的坐标,为平面方程.【详解】 .【评注】 本题属基本题型,要熟记空间解析几何中的概念和公式.(5)设矩阵,为2阶单位矩阵,矩阵满足,则 2 .【分析】 将矩阵方程改写为的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有 于是有 ,而,所以.【评注】 本题关键是将其转化为用矩阵乘积形式表示.类似题2005年考过.(6)设随机变量相互独立,且均服从区间上的均匀分布,则 .【分析】 利用的独立性及分布计算.【详解】 由题设知,具有相同的概率密度.则.【评注】 本题属几何概型,也可如下计算,如下图:则.二、选择题:714小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符
3、合题目要求,把所选项前的字母填在题后的括号内.(7)设函数具有二阶导数,且,为自变量在点处的增量,分别为在点处对应的增量与微分,若,则(A) . (B) .(C) . (D) . 【详解】 由知,函数单调增加,曲线凹向,作函数的图形如右图所示,显然当时,故应选(). 【评注】 对于题设条件有明显的几何意义或所给函数图形容易绘出时,图示法是求解此题的首选方法.本题还可用拉格朗日定理求解:因为,所以单调增加,即,又,则,即.(8)设为连续函数,则等于(). (B).(C).(D) . 【分析】 本题首先由题设画出积分区域的图形,然后化为直角坐标系下累次积分即可.【详解】 由题设可知积分区域如右图所
4、示,显然是型域,则原式.故选().【评注】 本题为基本题型,关键是首先画出积分区域的图形.(9)若级数收敛,则级数(A) 收敛 . (B)收敛.(C) 收敛. (D) 收敛. 【分析】 可以通过举反例及级数的性质来判定.【详解】 由收敛知收敛,所以级数收敛,故应选().或利用排除法:取,则可排除选项(),();取,则可排除选项().故()项正确.【评注】 本题主要考查级数收敛的性质和判别法,属基本题型.(10)设均为可微函数,且,已知是在约束条件下的一个极值点,下列选项正确的是(A) 若,则. (B) 若,则. (C) 若,则. (D) 若,则. 【分析】 利用拉格朗日函数在(是对应的参数的值
5、)取到极值的必要条件即可.【详解】 作拉格朗日函数,并记对应的参数的值为,则, 即 消去,得 ,整理得.(因为),若,则.故选(). (11)设均为维列向量,为矩阵,下列选项正确的是(A) 若线性相关,则线性相关. (B) 若线性相关,则线性无关. (C) 若线性无关,则线性相关. (D) 若线性无关,则线性无关. C 【分析】 本题考查向量组的线性相关性问题,利用定义或性质进行判定.【详解】 记,则.所以,若向量组线性相关,则,从而,向量组也线性相关,故应选().【评注】 对于向量组的线性相关问题,可用定义,秩,也可转化为齐次线性方程组有无非零解进行讨论.(12)设为3阶矩阵,将的第2行加到
6、第1行得,再将的第1列的倍加到第2列得,记,则().().().().【分析】利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得.【详解】由题设可得,而,则有.故应选().【评注】()每一个初等变换都对应一个初等矩阵,并且对矩阵施行一个初等行(列)变换,相当于左(右)乘相应的初等矩阵.()牢记三种初等矩阵的转置和逆矩阵与初等矩阵的关系.(13)设为随机事件,且,则必有(A) (B) (C) (D) B 【分析】 利用事件和的运算和条件概率的概念即可.【详解】 由题设,知 ,即.又.故应选().【评注】 本题考查随机事件的运算和关系的概念,应牢记.(14)设随机变量服从正态分布,服从正态分
7、布,且则必有(A) (B) (C) (D) D 【分析】 利用标准正态分布密度曲线的几何意义可得.【详解】 由题设可得,则,即.其中是标准正态分布的分布函数.又是单调不减函数,则,即.故选(A).【评注】 对于服从正态分布的随机变量,在考虑它的概率时,一般先将标准化,即.三 、解答题:1523小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)设区域, 计算二重积分 【分析】 由于积分区域关于轴对称,故可先利用二重积分的对称性结论简化所求积分,又积分区域为圆域的一部分,则将其化为极坐标系下累次积分即可.【详解】 积分区域如右图所示.因为区域关于轴对称,函数是变量的
8、偶函数,函数是变量的奇函数.则 ,故. 【评注】只要见到积分区域具有对称性的二重积分计算问题,就要想到考查被积函数或其代数和的每一部分是否具有奇偶性,以便简化计算.(16)(本题满分12分)设数列满足()证明存在,并求该极限;()计算. 【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在. ()的计算需利用()的结果.【详解】 ()因为,则.可推得,则数列有界.于是,(因当), 则有,可见数列单调减少,故由单调减少有下界数列必有极限知极限存在.设,在两边令,得,解得,即.()因,由()知该极限为型,令,则,而,又.(利用了的麦克劳林展开式)故.【评注】 对于
9、有递推关系的数列极限的证明问题,一般利用单调有界数列必有极限准则来证明.(17)(本题满分12分) 将函数展成的幂级数. 【分析】 利用常见函数的幂级数展开式.【详解】 ,比较两边系数可得,即.而,故.【评注】 分式函数的幂级数展开一般采用间接法.要熟记常用函数的幂级数展开公式:(1);(2);(3);(4);(5);(6);(7).(18)(本题满分12分)设函数在内具有二阶导数,且满足等式.(I)验证;(II)若,求函数的表达式. 【分析】 利用复合函数偏导数计算方法求出代入即可得(I).按常规方法解(II)即可.【详解】 (I) 设,则.,.将代入得.(II) 令,则,两边积分得,即,亦
10、即.由可得.所以有,两边积分得,由可得,故.【评注】 本题为基础题型,着重考查多元复合函数的偏导数的计算及可降阶方程的求解.(19)(本题满分12分)设在上半平面内,函数具有连续偏导数,且对任意的都有.证明:对内的任意分段光滑的有向简单闭曲线,都有.【分析】 利用曲线积分与路径无关的条件. 【详解】 两边对求导得.令 ,则.设,则.则由可得.故由曲线积分与路径无关的定理可知,对内的任意分段光滑的有向简单闭曲线,都有. 【评注】 本题难度较大,关键是如何将待求解的问题转化为可利用已知条件的情形.(20)(本题满分9分)已知非齐次线性方程组有3个线性无关的解.()证明方程组系数矩阵的秩;()求的值
11、及方程组的通解.【分析】 (I)根据系数矩阵的秩与基础解系的关系证明;(II)利用初等变换求矩阵的秩确定参数,然后解方程组.【详解】 (I) 设是方程组的3个线性无关的解,其中 .则有.则是对应齐次线性方程组的解,且线性无关.(否则,易推出线性相关,矛盾).所以,即.又矩阵中有一个2阶子式,所以.因此.(II) 因为.又,则 .对原方程组的增广矩阵施行初等行变换,故原方程组与下面的方程组同解.选为自由变量,则.故所求通解为,为任意常数.【评注】 本题综合考查矩阵的秩,初等变换,方程组系数矩阵的秩和基础解系的关系以及方程组求解等多个知识点,特别是第一部分比较新颖. 这是考查综合思维能力的一种重要
12、表现形式,今后类似问题将会越来越多.(21)(本题满分9分)设3阶实对称矩阵的各行元素之和均为3,向量是线性方程组的两个解.()求的特征值与特征向量;()求正交矩阵和对角矩阵,使得.【分析】 由矩阵的各行元素之和均为3及矩阵乘法可得矩阵的一个特征值和对应的特征向量;由齐次线性方程组有非零解可知必有零特征值,其非零解是0特征值所对应的特征向量.将的线性无关的特征向量正交化可得正交矩阵.【详解】 ()因为矩阵的各行元素之和均为3,所以,则由特征值和特征向量的定义知,是矩阵的特征值,是对应的特征向量.对应的全部特征向量为,其中为不为零的常数.又由题设知,即,而且线性无关,所以是矩阵的二重特征值,是其对应的特征向量,对应的全部特征向量为,其中为不全为零的常数.()因为是实对称矩阵,所以与正交,所以只需将正交.取,.再将单位化,得,令,则,由是实对称矩阵必可相似对角化,得.【评注】 本题主要考查求抽象矩阵的特征值和特征向量,此类问题一般用定义求解,则要想方设法将题设条件转化为的形式.(22)(本题满分9分)设随机变量的概率密度为,令为二维随机变量的分布函数.()求的概率密度().【分析】 求一维随机变量函数的概率密度一般先求分布,然后求导得相应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黄金焕肤病因介绍
- 和解调解协议书6篇
- 2023车库租赁协议书七篇
- 土地流转工作协议书
- 足跟瘀斑病因介绍
- 萎缩性毛周角化病病因介绍
- 中考政治总复习基础知识梳理九年级全册第二单元了解祖国爱我中华
- 中小学教师教育政策法规知识408新教师培训省公开课全国赛课一等奖微课获奖
- (可行性报告)一专业建设可行性分析
- (2024)植物纤维模塑制品项目可行性研究报告模板立项审批(一)
- 政府采购验收报告表
- 《静脉输液和输血法》PPT课件.ppt
- 《质量管理小组活动准则》2020版_20211228_111842
- 星巴克案例分析
- 工业区位和区位因素的变化(以首钢为例)
- 物业管理搞笑小品剧本 搞笑小品剧本:物业管理难啊
- 《木偶兵进行曲》教案
- 五四制青岛版一年级科学上册第四单元《水》全部教案
- GB∕T 39757-2021 建筑施工机械与设备 混凝土泵和泵车安全使用规程
- 组织架构图PPT模板
- 外研版七年级上ModuleUnit教学反思
评论
0/150
提交评论