版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第五单元:圆【单元教材分析】 这一单元的内容是圆,在这个单元中,教材安排了“圆的认识” 、“圆的周长和面积” 三个具体的内容,这三个内容由易到难,层层深入。 本单元内容是在学生学过了直线图形的认识和面积计算,以及圆的初步认识的基础上进行教学的。学生从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,都有所变化。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时,也渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念方面来说,进入了一个新的领域。因此,通过对圆的有关知识的学习,不仅加深学生对周围事物的理解,提高解决简单实际问题的能力
2、,也为以后学习圆柱、圆锥等知识和绘制简单统计图打好基础。学生将在这个单元中,结合动手操作、比较、测量等多种数学活动,更深入的理解、掌握圆的特点,进一步发展空间观念。与实验教材的主要区别1. 通过用圆规画圆引出圆的各部分名称,继而研究圆的性质。减少圆的对称性的篇幅。2. 增加“利用圆设计图案”的内容。3. 增加求圆外切正方形、圆内接正方形与圆之间面积的“问题解决”。4. “扇形”由选学内容变为正式教学内容。【单元教学目标】:1、学生认识圆,掌握圆的特征;理解直径半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。2、探索圆的周长与面积的计算方法中,获得探索问题成功的体验。3、 亲历动手操作、实
3、验观察等方法,探索圆的周长、面积的计算方法,并能运用计算方法解决生活中的一些实际问题。4、通过以上一系列的学习活动,激发学生的学习兴趣,培养主动探索的欲望和创新精神。5、培养学生观察、比较、想象等能力,进一步发展学生的空间观念。【具体按排】【单元教学重点】:1、学生认识圆,知道圆的各部分名称 2、掌握圆的特征及在同一个圆里半径和直径的关系 3、初步学会用圆规画圆,培养学生的作图能力 4、亲历动手操作、实验观察等方法,探索圆的周长、面积的计算方法,并能运用计算方法解决生活中的一些实际问题。1. 圆的认识,圆的各部分名称、圆的性质。利用圆设计图案。2. 圆的周长,圆的周长计算公式的推导。例1:圆的
4、周长计算公式的应用。3. 圆的面积,圆的面积计算公式的推导。例1:圆的面积计算公式的基本应用。例2:圆环面积的计算。例3:圆与内接正方形、外切正方形之间面积的计算。4. 扇形的认识三、 教学建议1. 引导学生动手操作、自主探索圆的特征。2. 注重引导学生运用和体验转化、极限等数学思想方法。3. 紧密结合生活素材,培养学生在日常生活中应用数学的意识和能力。课 题第一课时:圆的认识教学目标:1使学生认识圆,掌握圆的各部分名称 2通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系 3初步学会用圆规画圆,培养学生的作图能力 4培养学生观察、分析、抽象、概括等思维能力 教学重点 在动手操作
5、中掌握圆的特征,学会用圆规画圆的方法 教学难点 理解圆上的概念,归纳圆的特征 教材分析:教材首先说明什么是圆,并结合周围物体说一说,这样调动了学生已有的生活经验,再通过画圆、折圆、测量等活动,展现圆的特征,其目的在于让学生通过观察、操作理解圆中的各部分关系,从而掌握圆的特征并解释生活中相关问题。学情分析:圆是在学生学过了直线图形以及圆的初步认识的基础上进行教学的。圆这一平面上的曲线图形,学生在生活中经常看到,它到底有什么特征呢?是本节课学生学习的重点,在学习圆的认识时,学生通过观察、操作,自己获取一些有关圆的特征的知识,这样回大大提高学生的学习兴趣,发挥学生的主体性。教学过程 : 备注:一、
6、导入新课活动一:演示操作,揭示课题 师:一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来 1教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆) 2小结引入:(出示铁丝围成的圆)这就是一个圆圆也是一种平面图形,这节课我们就来学习圆的认识(板书课题:圆的认识) 二、探究新知(一)画圆中感受“圆”你能想办法在纸上画一个圆吗?介绍各种画圆方法,并实践(二)认识半径、直径的特点及关系1、用圆规画几个不同大小的圆,剪下来,沿着直径折一折,画一画,量一量,会有什么发现?2、反馈:把圆沿任何一条直径对折,两边可以重合。一个圆里的半径有无数条,直径有无数条。同一圆内,所有的半径都相
7、等,所有的直径都相等,直径的长度是半径长度的2倍。(三)认识圆心、半径作用1、圆的中心位置由什么决定的?半径决定圆的什么?圆心确定了圆的中心位置就确定了。半径决定了圆的大小。三、练习中深化认识圆1、看图填空。四、运用圆设计图案 请你试着用圆规和直尺画一画下面的图形。 五、实践与应用(一)判断 1画圆时,圆规两脚间的距离是半径的长度( ) 2两端都在圆上的线段,叫做直径( ) 3圆心到圆上任意一点的距离都相等( ) 4半径2厘米的圆比直径3厘米的圆大(
8、) 5所有圆的半径都相等( ) 6在同一个圆里,半径是直径的 ( ) 7在同一个圆里,所有直径的长度都相等( ) 8两条半径可以组成一条直径( ) (二)按下面的要求,用圆规画圆 1半径2厘米 2半径2.5厘米 3直径8厘米 (三)怎样测量没有圆心的圆的直径?六、全课小结 这节课我们学习了什么?通过这节课的学习你有什么收获?七、布置作业作业:第58页,做一做。第60页练习十三,第5题、第10题。 活动二、动手操作,探究新知 (一)教师让学生举例说明周围
9、哪些物体上有圆 (二)认识圆的各部分名称和圆的特征 1学生拿出圆的学具 2教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的) 教师说明:圆是平面上的一种曲线图形 3通过具体操作,来认识一下圆的各部分名称和圆的特征 (1)先把圆对折、打开,换个方向,再对折,再打开这样反复折几次 教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕) 仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点) 教师指出:我们把圆中心的这一点叫做圆心圆心一般用字母o表示教师板书:圆心 (2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么? (圆心到圆上任意一点的距离都
10、相等) 教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示(教师在圆内画出一条半径,并板书:半径 ) 教师提问:根据半径的概念同学们想一想,半径应具备哪些条件? 在同一个圆里可以画多少条半径? 所有半径的长度都相等吗? 教师板书:在同一个圆里有无数条半径,所有半径的长度都相等 (3)同学继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方? 教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径直径一般用字母 d来表示(教师在圆内画出一条直径,并板书:直径 ) 教师提问:根据直径的概念同学们想一想,直径应具备什么条件? 在同一个圆里可以画出多少条
11、直径? 自己用尺子量一量同一个圆里的几条直径,看一看,所有直径的长度都相等吗? 教师板书:在同一个圆里有无数条直径,所有直径的长度都相等 (4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等 (5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢? 如何用字母表示这种关系? 反过来,在同一个圆里,半径的长度是直径的几分之几? 教师板书:在同一个圆里,直径的长度是半径的2倍 (三)反馈练习1、P58 12、填表半径(cm) 0.241.42直径(cm)0.841.04(四)圆的画法 1、学生自学,看书57页。 2、学
12、生试画。 3、学生通过试画小结用圆规画圆的方法,注意的问题。4、教师归纳板书:1定半径;2定圆心;3旋转一周 教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚 5、学生练习 (五)教师提问 为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置? 教师板书:半径决定圆的大小,圆心决定圆的位置 (六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办? 活动三、实践与应用(一)判断 1画圆时,圆规两脚间的距离是半径的长度( ) 2两端都在圆上的线段,叫做直径( &
13、#160; ) 3圆心到圆上任意一点的距离都相等( ) 4半径2厘米的圆比直径3厘米的圆大( ) 5所有圆的半径都相等( ) 6在同一个圆里,半径是直径的 ( ) 7在同一个圆里,所有直径的长度都相等( ) 8两条半径可以组成一条直径( ) (二)按下面的要求,用圆规画圆 1半径2厘米 2半径2.5厘米 3直径8厘米 (三)怎样测量没有圆心的圆的直径?活动四、全课小结 这节课我们学
14、习了什么?通过这节课的学习你有什么收获?板 书 设 计课 题第二课时:圆的周长教材分析:教材向我们呈现了什么是圆的周长,以及通过操作发现圆的周长与直径的关系,展示了如何计算圆的周长,可见圆的周长的计算方法是通过学生自主探索总结发现的,教学时我们应充分认识到这一点。学情分析:学生已经有了对周长的认识,只是研究圆的周长需要探索圆的周长与直径的关系,那么,对于圆的周长与直径的这个倍数关系,学生通过测量、计算是能发现的,然后再根据这一倍数关系推导出周长的计算方法。教学时,关键是引导学生能发现圆的周长与直径之间的倍数关系。教学目标: 1理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算
15、2培养学生的观察、比较、分析、综合及动手操作能力 3领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法 4结合圆周率的学习,对学生进行爱国主义教育 教学重点:推导并总结出圆周长的计算公式。教学难点:深入理解圆周率的意义。教学过程: 一、问题引入圆桌和菜板都有点开裂,需要在它们的边缘箍上一圈铁皮。分别需要多长的铁皮啊?同学们,你们有办法解决吗?二、探究新知(一)测量圆周长1、课件演示2、像这样,围成圆的曲线的长是圆的周长。除了上面的方法,还可以怎样求圆的周长呢?圆的周长和圆的大小有关系,圆的大小取决于圆的半径(二)探究圆周长与直径的关系1、让我们来做一个实验:找一些圆形的
16、物品,分别量出它们的周长和直径,并算出周长和直径的比值,把结果填入下表中,看看有什么发现。通过计算发现:原来一个圆的周长总是它的直径的3倍多一些。2、认识圆周率其实,早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率,用字母表示。它是一个无限不循环小数,3.1415926535但在实际应用中常常只取它的近似值,例如3.14。如果用C表示圆的周长,就有:(三)学习例1三、知识应用 四、介绍数学史五、布置作业作业:第65页练习十四,第1题第6题。备注: 活动一:创设情境,引起猜想:认识圆的周长 (一)激发兴趣小黄狗和小灰狗比赛跑,小黄狗沿着正方形
17、路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气它说这样的比赛不公平。同学们,你认为这样的比赛公平吗? (二)认识圆的周长1.回忆正方形周长:小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长? 2.认识圆的周长: 那小灰狗所跑的路程呢?圆的周长又指的是什么意思? 每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体 中找出一个圆形来,互相指一指这些圆的周长。(三)讨论正方形周长与其边长的关系 1我们要想对这两个路程的长度进行比较,实际上需要知道什么? 2. 怎样才能知道这个正
18、方形的周长?说说你是怎么想的? 3. 那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍? (四)讨论圆周长的测量方法 1.讨论方法: 刚才我们已经解决了正方形周长的问题,而圆的周长呢? 如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长? 2.反馈:(基本情况)(1)“滚动”把实物圆沿直尺滚动一周;(2)“缠绕”用绸带缠绕实物圆一周并打开;(3)“折叠”把圆形纸片对折几次,再进行测量和计算;(4)初步明确运用各种方法进行测量时应该注意的问题。3.小结各
19、种测量方法:(板书) 转化 曲 直4.创设冲突,体会测量的局限性刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢
20、? 5.明确课题: 今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)(五)合理猜想,强化主体: 1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反馈。2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?向大家说一说你是怎么想的。 3.正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的倍?
21、 (正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)4.小结并继续设疑: 通过观察和想象,大家都已经意识到圆的周长肯定是直径的24倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?活动二:动手操作,探索圆的周长与直径的关系。(一)分组合作测算1.明确要
22、求:圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。测量对象圆的周长(厘米)圆的直径(厘米)周长与直径的关系1 2 3 4 2.生利用学具动手操作,师巡视指导、收集信息。3.集体反馈数据(选取34组实验结果,大屏幕展示)(二)发现
23、规律,初步认识圆周率1.看了几组同学的测算结果,你有什么发现?2.虽然倍数不大一样,但周长大多是直径的几倍?3.刚才同学们已经对大小不同的圆进行了比较准确的测算,如果我们任选一个圆再进行测算,结果还会怎样?(课件进行验证)板书:圆的周长总是直径的三倍多一些。活动三:认识圆周率、介绍祖冲之1我们把圆的周长与直径的比值叫做圆周率,用希腊字母表示 2介绍祖冲之 3.理解误差 看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?4.解答开始的问题现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗
24、?活动四:总结圆的周长公式1怎样求周的长?如果我用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示? 教师板书:Cd 2圆的周长还可以怎样求? 教师板书:C2r 3圆的周长分别是直径与半径的几倍? 活动五:课堂反馈 六、补充练习一、判断 1=3.14
25、;( ) 2计算圆的周长必须知道圆的直径. ( ) 3只要知道圆的半径或直径,就可以求圆的周长。( ) 二、选择 1较大的圆的圆周率( )较小的圆的圆周率 a 大于 b 小于 c 等于 2半圆的周长( )圆
26、周长 a 大于 b 小于 c 等于 3、实践操作、老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?、请同学们以小组为单位,画一个周长是12.56厘米的圆,先讨论如何画,再操作 活动六:课堂小结通过这堂课的学习,你有什么收获?你还有什么问题吗?板 书 设 计课 题第三课时:圆的面积(1)教材分析:初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为
27、以后学习圆柱、圆锥的知识打下基础。学情分析:学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。教学目标:1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察“曲”与“直”的转化
28、,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。教学重点:通过观察操作,推导出圆面积公式及其应用。教学难点:极限思想的渗透与圆面积公式的推导过程。教学过程: 一、问题引入怎样计算一个圆的面积呢?能不能和学过的图形联系起来呢?如果知道了圆的半径,可以计算出图中圆内外的两个正方形的面积,圆的面积介于这两个正方形面积之间。二、探究新知(一)探索圆面积的计算方法1、你们还有别的方法吗?动画课件从上图中可以看出圆的半径是r,长方形的长近似( ),宽近似于( )。因为长方形的面积( )×( )所以圆面积( )×( )( )如果用S表示圆的面积,那么圆的面积计算公式就是 :
29、(二)应用公式1、出示:圆形草坪的直径是20m,每平方米草皮8元,铺满草坪需要多少钱?2、从题目中你都知道了什么?要求铺满草坪需要多少钱,先要求出圆形草坪的面积是多少平方米。3、学生尝试解决20÷210(m)314×82512(元)3.14×10²314(m²)答:铺满草皮需要2512元。(三)探索圆环面积的计算方法1、出示:光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?2、怎样利用内圆和外圆的面积求出圆环的面积?3、学生尝试4、汇报3.14×6²3.14×2²113.0
30、412.56100.48(cm²)3.14×(6²2²)3.14×32100.48(cm²)答:圆环的面积是100.48 cm²。三、知识应用1. 一个圆形茶几桌面的直径是1m,它的面积是多少平方米?1÷20.5(m)3.14×0.5²0.785(m²)答:它的面积是0.785m²。先求出半径,再求圆的面积。2. 一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?3.14×(25²5²)3.14&
31、#215;6001884(m²)要求草坪的占地面积,也就是求圆环的面积。四、布置作业作业:第71页,练习十五,第2题第4题。 第72页,第5题。 第四课时:圆的面积(2)教学目标:1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想,使学生受到辩证唯物主
32、义观点的启蒙教育。一、复习旧知1. 一个圆的周长是12.56cm,求它的半径?12.56÷3.14÷22(cm)2. 一个圆形茶几面的半径是3dm ,它的面积是多少平方分米?3.14×3²28.26(dm²)二、探究新知1、中国建筑中经常能见到“外方内圆”和“外圆内方”的设计。上图中的两个圆半径都是1m,你能求出正方形和圆之间部分的面积吗? 上图中两个圆的半径都是1m,怎样求正方形和圆之间部分的面积呢?题目中都告诉了我们什么?2、你能解决这个问题吗?3、那么我们解答得对不对呢?有什么方法验证吗?如果两个圆的半径都是r,结果又是怎样的?当r1 m
33、时,和前面的结果完全一致。三、知识应用(一)解决问题。右图是一面我国唐代外圆内方的铜镜。铜镜的直径是24.8 cm。外面的圆与内部的正方形之间的面积是多少?(二)生活中的数学。车轮,井盖四、布置作业作业:第72页练习十五,第9题。 第73页练习十五,第10题第14题。第五课时扇形一、复习旧知1、你能指出这个圆的圆心、半径和直径吗?(出示课件)2、一个底面是圆形的蒙古包,沿地面量得周长25.12m,它的占地面积是多少平方米?二、探究新知1、什么是扇形?2、这些物体的外形有什么相同的地方?3、认识扇形 图上A、B两点之间的部分叫做弧,读作“弧AB”。一条弧和经过这条弧两端的两条半径所围成的图形叫做
34、扇形。顶点在圆心的角叫做圆心角。4、下面各图中,哪些角是圆心角?5、找特点在同一个圆中,扇形的大小与什么有关系呢?三、知识应用1、 指出下列物体中的扇形。2、 下面各图中的实线围成的图形是扇形吗?四、布置作业作业:第76页练习十六,第2题第4题。第六课时 确定起跑线教学目标:1通过该活动让学生了解田径场跑道的结构,学会确定起跑线的方法。2通过活动培养学生利用小组合作探究解决问题的能力。3通过活动让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。教学过程: 课前谈话:同学们,11月12日我国在广州承办了第十六届亚洲运动会,我国的体育健儿们努力拼搏取得了优异的成绩
35、。 今天,我们一同来欣赏两个精彩的比赛片段,你们注意观察它们的起点位置和终点位置。 一、创设情景,提出问题1情景导入:(100米和400米的比赛实况录像) 师:同学们对刚刚的两场比赛有什么看法?生:终点位置相同,起点位置不同。2赛事回放:欣赏运动场上运动员起跑时的图片。师:对比这两组图片,你们看到了什么?为什么?生:100米起跑在直道,距离相等;400米要经过弯道,起点不一样在弯道。)师:同学们的想法与我们体育比赛中的想法一样,进行400米的比赛。如果从同一条起跑线起跑,外道比内道长,相邻跑道之间有差距,那就不公平了
36、。为了公平的原则 ,400米比赛时会将起跑线依次向前移。那么这个距离可以随便移动的吗?如果不是随便移动的,各跑道的起跑线应该相差多少米呢? 4揭示课题:今天,我们就带着这个问题走进运动场,用我们的知识找出相邻起跑线相差多少米?确定一个公平的起跑线。(板书课题)二、观察跑道,探究问题(一)了解跑道结构:(出示完整跑道图)这是一个标准的运动场平面图。一般来说,标准跑道是400米,共有8个道,最里面的一条我们通常叫做第一跑道,从里到外一次是1到8跑道。同学们这个400米的运动场400米指的是哪条跑道?(第一条跑道的内侧线)同学们还看懂了什么?生1:直道长都是85.96米,跑道宽是
37、1.25米,第一条跑道的半圆形弯道的直径是72.6米。生2:每一条跑道的两个弯道能组成一个圆。师:一条跑道由哪几部分组成(课件演示一条跑道)(两个直道和两个弯道)。在跑道上跑一圈的长度可以看成是哪几部分的和? (出示:跑道一圈长度=2个弯道长度+2个直道长度)师:8596米是指哪部分的长度?一条直道吗?400米比赛,运动员绕着每条跑道跑,各跑道之间的差距会在跑道的哪一部分呢?生:差距在两个弯道。 (二)讨论寻求解决方法:1、请同学们拿出第一张学具,以小组为单位进行讨论。 *、友情提示:(1)、弯道是什么形状?左右两个半圆形的弯道
38、合起来是一个什么图形?(2)、怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之差?(3)、怎样求相邻跑道的长度差?2、汇报讨论结果。(只要计算出各圆的周长,算出相邻两圆周长相差多少米,就知道相邻跑道的差距,也就是相邻起跑线相差多少米;求出跑道的全长,或求出跑道的弯道长,可以求跑道差了)3、同学们开动脑筋,说得很好,下面请你们拿出第二张学具,以小组为单位,首先算一算第一条和第二条跑道的起点相差的距离是多少?(计算过程中,答案保留两位小数)算完后再把计算的结果填在表格中。(提醒表格中的周长和全长各指什么?)方法一:第一圈圆周长:3.14159*72.6228.08米 跑道一周的长度
39、:85.96*2 + 228.08400米第二圈圆周长:3.14159*75.1235.93米跑道一周的长度:85.96*2+235.93=407.85米两条跑道的差是:407.85-400=7.85米师:我们刚才的计算是先算两个圆的周长,再算全长,最后算两条跑道的差 ,计算起来很复杂,有没有什么简单些的方法。方法二:直接用相邻跑道的外圆和内圆的周长相减。 3.14159*75.1-3.14159*72.6=7.85(米)相邻两条跑道的差=相邻外圆周长一内圆周长方法三:用
40、相邻外圆直径与内圆直径的差*(75.1-72.6)*=7.85(米)相邻两条跑道的差=(相邻外圆直径-内圆直径)* (引导学生观察直径差两个道宽,即道宽的2倍)方法四:相邻两条跑道的差=道宽*2*,(板书)1.25*2*3.14159=7.85(米)4、对比这四种方法,你们喜欢哪一种?为什么?生:最后一种。我们只知道一个条件就可以算出相邻两跑道的差。能给我们的计算带来很大的方便。师:根据我们刚刚发现的规律其它相邻两个跑道的差能算么?把剩下的填完整。师:经过同学们的不断努力我们最终得出了什么结论?到底要前移多少米呢?生:每相邻两条跑道的差都是7.85米,也就是说,每相邻的外跑道的起跑线在内跑道前7.85米的地方。过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 残疾人居家办公劳动合同
- 不解除合同不安排工作 通知书
- 边坡防护劳务合同
- 报关合同操作内容
- 糖尿病并发症及预防
- 高速收费员入职前培训
- 河南省部分学校2024-2025学年高一上学期11月期中考试政治试题(含答案 )
- 《棉碱溶性涤纶低弹丝包芯本色纱》
- 服装经理规划方案
- 甘肃省临洮县2024-2025学年度第一学期第二次月考卷-七年级道德与法治
- 《灵敏素质练习》教案
- 中国文化英语教程Unit-3
- 如何对待父母唠叨
- 型钢轧制操作学习培训导卫安装与调整操作课件
- 人教PEP版六年级英语上册《Unit 4 Part B 第5课时》教学课件PPT小学公开课
- 红色国潮风谢师宴活动策划PPT模板课件
- 统编版四年级上册语文课件 - 第五单元 习作例文 (PPT28页)
- T∕CSPSTC 69-2021 磷石膏预处理技术规范
- T∕CAWA 002-2021 中国疼痛科专业团体标准
- 铁精矿管道输送工艺在鞍钢矿山的应用
- 农产品电子商务平台建设项目可行性研究报告
评论
0/150
提交评论