重庆南开中学高2017级高二下期末数学文科_第1页
重庆南开中学高2017级高二下期末数学文科_第2页
重庆南开中学高2017级高二下期末数学文科_第3页
重庆南开中学高2017级高二下期末数学文科_第4页
重庆南开中学高2017级高二下期末数学文科_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数学(文科)期末考试一、选择题:本题共12小题,每小题5分.1.集合,则( )A. B. C. D. 2.若命题,则为( )A. B. C. D. 3.已知,则下列不等式一定成立的是( )A. B. C. D. 4.某同学在只听课不做作业的情况下,数学总不及格。后来他终于下定决心要改变这一切,他以一个月为周期,每天都作一定量的题,看每次月考的数学成绩,得到5个月的数据如下表:一个月内每天做题数58647数学月考成绩8287848186根据上表得到回归直线方程,若该同学数学想达到90分,则估计他每天至少要做的数学题数为( )A.B. C. D. 5.已知是两条不同的直线,是两个不同的平面,则下列

2、命题中正确的是()A.若,则或B. 若不垂直于,则不可能垂直于内的无数条直线C. 若,且则D. 若,则6.一个多面体的三视图如图所示,则此多面体的外接球的表面积为( )A. B. C. D. 7.已知一圆锥的母线长为,若过该圆锥顶点的所有截面面积分布范围是,则该圆锥的侧面展开图的扇形圆心角等于() A.B. 或C. D. 8.已知“整数对”按如下规律排成一列:,则第15个整数对是( ) A. B. C. D. 9.已知为等边三角形,在内随机取一点,则为钝角三角形的概率为( )A. B. C. D. 10.已知函数在上既有极大值又有极小值,则实数的取值范围为( )A. B. C. D. 11.设

3、抛物线的焦点为,其准线与轴交点为,过点作直线与抛物线交于点,若,则( )A.B. C. D. 12.设直线与曲线相交于点,且曲线在点处的切线斜率都为,则( )A. B.C. D. 二、填空题: 本题共4小题,每小题5分.13.若函数在区间上单调递减,则实数的取值范围是_.14.设变量满足约束条件,若目标函数其中,的最小值为,则实数_.15.若正数满足,则的最小值为_.16.若不等式对任意的恒成立,则实数的取值范围是_.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知,设命题,命题当,函数恒成立.(1)若为真命题,求的取值范围;(2)若为真命题,是假命题,求的取值范围.18某校为了

4、了解学生对消防知识的了解情况,从高一年级和高二年级各选取100名同学进行消防知识竞赛下图(1)和图(2)分别是对高一年级和高二年级参加竞赛的学生成绩按40,50),50,60),60,70),70,80分组,得到的频率分布直方图(1)请估算参加这次知识竞赛的高一年级学生成绩的众数和高二年级学生成绩的平均值;(2)完成下面22列联表,并回答:有多大的把握可以认为“学生所在的年级与消防常识的了解存在相关性”?成绩小于60分人数成绩不小于60分人数合计高一高二合计附:临界值表及参考公式:,19如图所示,正四棱柱的底面边长为,为的中点,为的中点,连结.(1)求证:平面;(2)求点到平面的距离.20.已

5、知椭圆的长轴长为,右焦点为,且成等差数列.(1)求椭圆的方程;(2)过点分别作直线,直线与椭圆交于点,直线与椭圆交于点,且,求四边形面积的最小值.21.(1)已知,证明:;(2)设,证明:.请考生在第题中任选一题作答,如果多做,则按所做的第一题计分.22.如图,四边形是圆内接四边形,.延长到使,连结.(1)求证:;(2)若,求的值.23.在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系. 已知曲线的极坐标方程为:(其中,),是曲线上的两个动点,且.(1)求曲线的直角坐标方程;(2)求的最大值.24.已知函数.(1)若,解不等式:;(2)若对任意的实数恒成立,求实数的取值范围.重庆市南

6、开中学高2017级高二(下)数学(文科)期末考试一、选择题:1-6. DCCCCB 7-12. DABDBD二、填空题:13.14.15.16.三、解答题:17.解:(1)若为真:(2)若为真:由题 为真命题,是假命题,则一真一假;真假: ,无解;假真:综上,或18解:(1)高一年级学生竞赛成绩的 众数 为55分;高二年级学生竞赛平均成绩为(4515553565357515)10060(分)(2)22列联表如下:成绩小于60分人数成绩不小于60分人数合计高一7030100高二5050100合计12080200K28.333,有99.5%的把握认为“学生所在的年级与消防常识的了解有关”19证明:

7、(1) . 又故,又,所以.(2) 由于是正三角形,所以又由于,所以; 由于,所以, = ,故20.解:(1)由题,三式联立得,所以椭圆(2)若有一个斜率不存在,则四边形面积若斜率都存在,设,其中,联立与椭圆方程得同理可得令,则,等号成立时,即综上所述,四边形面积的最小值为21.(1)证明:(1)令,因为,当,在上为减函数;当时,在上为增函数;所以,即.(2)原不等式等价于,构造函数,只需证明就能说明,从而递增,原式得证,所以只需证当时上式显然成立,当时,成立:,故,由(1)上式仍成立.请考生在第题中任选一题作答,如果多做,则按所做的第一题计分.22.证明:(1).又(2) 由于;. 23.解:(1)直角坐标方程为:;(2) 设,分以下三种情况讨论:若在Y轴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论