版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上九年级数学中考综合题1、(2013牡丹江)如图,平面直角坐标系中,矩形OABC的对角线AC=12,tanACO=,(1)求B、C两点的坐标;(2)把矩形沿直线DE对折使点C落在点A处,DE与AC相交于点F,求直线DE的解析式;(3)若点M在直线DE上,平面内是否存在点N,使以O、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由考点:一次函数综合题分析:(1)利用三角函数求得OA以及OC的长度,则C、B的坐标即可得到;(2)直线DE是AC的中垂线,利用待定系数法以及互相垂直的两直线的关系即可求得DE的解析式;(3)分当FM是菱形的边和当
2、OF是对角线两种情况进行讨论利用三角函数即可求得N的坐标解:(1)在直角OAC中,tanACO=,设OA=x,则OC=3x,根据勾股定理得:(3x)2+(x)2=AC2,即9x2+3x2=144,解得:x=2故C的坐标是:(6,0),B的坐标是(6,6);(2)直线AC的斜率是:=,则直线DE的斜率是:F是AC的中点,则F的坐标是(3,3),设直线DE的解析式是y=x+b,则9+b=3,解得:b=6,则直线DE的解析式是:y=x6;(3)OF=AC=6,直线DE的斜率是:DE与x轴夹角是60°,当FM是菱形的边时(如图1),ONFM,则NOC=60°或120°当N
3、OC=60°时,过N作NGy轴,则NG=ONsin30°=6×=3,OG=ONcos30°=6×=3,则N的坐标是(3,3);当NOC=120°时,与当NOC=60°时关于原点对称,则坐标是(3,3);当OF是对角线时(如图2),MN关于OF对称F的坐标是(3,3),FOD=NOF=30°,在直角ONH中,OH=OF=3,ON=2作NLy轴于点L在直角ONL中,NOL=30°,则NL=ON=,OL=ONcos30°=2×=3故N的坐标是(,3)则N的坐标是:(3,3)或(3,3)或(,
4、3) 2、(2013安徽)如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(0A<OB)是方程x2-18x+72=0的两个根,点C是线段AB的中点,点D在线段OC上,OD=2CD (1)求点C的坐标; (2)求直线AD的解析式; (3)P是直线AD上的点,在平面内是否存在点Q,使以O、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由 【解】(1)OA=6,OB=12 点C是线段AB的中点,OC=AC,作CEx轴于点E OE=OA=3,CE=OB=6 点C的坐标为(3,6) (2)作DFx轴于点F OFDOEC,=,于是可求得OF=
5、2,DF=4 点D的坐标为(2,4) 设直线AD的解析式为y=kx+b把A(6,0),D(2,4)代人得解得k=-1,b=6 直线AD的解析式为y=-x+6 (3)存在Q1(-3,3) Q2(3,-3) Q3(3,-3) Q4(6,6) 3、(2013绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OAOC)的长分别是一元二次方程x214x+48=0的两个实数根(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标 考点:一次函数综合题分析:(
6、1)通过解方程x214x+48=0可以求得OC=6,OA=8则C(0,6);(2)设直线MN的解析式是y=kx+b(k0)把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答解答:解:(1)解方程x214x+48=0得x1=6,x2=8OA,OC(OAOC)的长分别是一元二次方程x214x+48=0的两个实数根,OC=6,OA=8C(0,6);(2)设直线MN的解析式是y=kx+b(k0)由(1)知,OA=8,则A(8,0
7、)点A、C都在直线MN上,解得,直线MN的解析式为y=x+6;(3)A(8,0),C(0,6),根据题意知B(8,6)点P在直线MNy=x+6上,设P(a,a+6)当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);当PC=BC时,a2+(a+66)2=64,解得,a=,则P2(,),P3(,);当PB=BC时,(a8)2+(a+66)2=64,解得,a=,则a+6=,P4(,)综上所述,符合条件的点P有:P1(4,3),P2(,)P3(,),P4(,)点评:本题考查了一次函数综合题其中涉及到的知识点有:待定
8、系数法求一次函数解析式,一次函数图象上点的坐标特征,等腰三角形的性质解答(3)题时,要分类讨论,防止漏解另外,解答(3)题时,还利用了“数形结合”4、(2013湖州)如图,已知点A是第一象限内横坐标为2的一个定点,ACx轴于点M,交直线y=x于点N若点P是线段ON上的一个动点,APB=30°,BAPA,则点P在线段ON上运动时,A点不变,B点随之运动求当点P从点O运动到点N时,点B运动的路径长是考点:一次函数综合题分析:(1)首先,需要证明线段B0Bn就是点B运动的路径(或轨迹),如答图所示利用相似三角形可以证明;(2)其次,如答图所示,利用相似三角形AB0BnAON,求出线段B0B
9、n的长度,即点B运动的路径长解答:解:由题意可知,OM=,点N在直线y=x上,ACx轴于点M,则OMN为等腰直角三角形,ON=OM=×=如答图所示,设动点P在O点(起点)时,点B的位置为B0,动点P在N点(起点)时,点B的位置为Bn,连接B0BnAOAB0,ANABn,OAC=B0ABn,又AB0=AOtan30°,ABn=ANtan30°,AB0:AO=ABn:AN=tan30°,AB0BnAON,且相似比为tan30°,B0Bn=ONtan30°=×=现在来证明线段B0Bn就是点B运动的路径(或轨迹)如答图所示,当点P运
10、动至ON上的任一点时,设其对应的点B为Bi,连接AP,ABi,B0BiAOAB0,APABi,OAP=B0ABi,又AB0=AOtan30°,ABi=APtan30°,AB0:AO=ABi:AP,AB0BiAOP,AB0Bi=AOP又AB0BnAON,AB0Bn=AOP,AB0Bi=AB0Bn,点Bi在线段B0Bn上,即线段B0Bn就是点B运动的路径(或轨迹)综上所述,点B运动的路径(或轨迹)是线段B0Bn,其长度为故答案为:点评:本题考查坐标平面内由相似关系确定的点的运动轨迹,难度很大本题的要点有两个:首先,确定点B的运动路径是本题的核心,这要求考生有很好的空间想象能力和
11、分析问题的能力;其次,由相似关系求出点B运动路径的长度,可以大幅简化计算,避免陷入坐标关系的复杂运算之中5、(2013济宁)如图,直线y=x+4与坐标轴分别交于点A、B,与直线y=x交于点C在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外)(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最
12、大?并求出最大值考点:一次函数综合题分析:(1)根据直线y=x+4与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EPBO,得出=,据此可以求得点P的运动速度;(2)当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可;(3)根据(2)中所求得出s与t的函数关系式,进而利用二次函数性质求出即可解答:解:(1)直线y=x+4与坐标轴分别交于点A、B,x=0时,y=4,y=0时,x=8,=,当t秒时,QO=FQ=t,则EP=t,EPBO,=,AP=2t,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,点P运动的速度是每秒2个单位长度;(2)如图1,当PQ=PE时,矩
13、形PEFQ为正方形,则OQ=FQ=t,PA=2t,QP=8t2t=83t,83t=t,解得:t=2,如图2,当PQ=PE时,矩形PEFQ为正方形,OQ=t,PA=2t,OP=82t,QP=t(82t)=3t8,t=3t8,解得:t=4;(3)如图1,当Q在P点的左边时,OQ=t,PA=2t,QP=8t2t=83t,S矩形PEFQ=QPQF=(83t)t=8t3t2,当t=时,S矩形PEFQ的最大值为:=4,如图2,当Q在P点的右边时,OQ=t,PA=2t,QP=t(82t)=3t8,S矩形PEFQ=QPQE=(3t8)t=3t28t,当点P、Q其中一点停止运动时,另一点也停止运动,0t4,当t
14、=时,S矩形PEFQ的最小,t=4时,S矩形PEFQ的最大值为:3×428×4=16,综上所述,当t=4时,S矩形PEFQ的最大值为:16点评:此题主要考查了二次函数与一次函数的综合应用,得出P,Q不同的位置进行分类讨论得出是解题关键6、(2013常州)在平面直角坐标系xOy中,一次函数y=2x+2的图象与x轴交于A,与y轴交于点C,点B的坐标为(a,0),(其中a0),直线l过动点M(0,m)(0m2),且与x轴平行,并与直线AC、BC分别相交于点D、E,P点在y轴上(P点异于C点)满足PE=CE,直线PD与x轴交于点Q,连接PA(1)写出A、C两点的坐标;(2)当0m1
15、时,若PAQ是以P为顶点的倍边三角形(注:若HNK满足HN=2HK,则称HNK为以H为顶点的倍边三角形),求出m的值;(3)当1m2时,是否存在实数m,使CDAQ=PQDE?若能,求出m的值(用含a的代数式表示);若不能,请说明理由考点:一次函数综合题分析:(1)利用一次函数图象上点的坐标特征求解;(2)如答图1所示,解题关键是求出点P、点Q的坐标,然后利用PA=2PQ,列方程求解;(3)如答图2所示,利用相似三角形,将已知的比例式转化为:,据此列方程求出m的值解答:解:(1)在直线解析式y=2x+2中,令y=0,得x=1;x=0,得y=2,A(1,0),C(0,2);(2)当0m1时,依题意
16、画出图形,如答图1所示PE=CE,直线l是线段PC的垂直平分线,MC=MP,又C(0,2),M(0,m),P(0,2m2);直线l与y=2x+2交于点D,令y=m,则x=,D(,m),设直线DP的解析式为y=kx+b,则有,解得:k=2,b=2m2,直线DP的解析式为:y=2x+2m2令y=0,得x=m1,Q(m1,0)已知PAQ是以P为顶点的倍边三角形,由图可知,PA=2PQ,即,整理得:(m1)2=,解得:m=(1,不合题意,舍去)或m=,m=(3)当1m2时,假设存在实数m,使CDAQ=PQDE依题意画出图形,如答图2所示由(2)可知,OQ=m1,OP=2m2,由勾股定理得:PQ=(m1);A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度专利实施许可及技术转让合同2篇
- 足疗店技师合作协议1
- 医药销售协议
- 科普知识课件
- 国际磋商2024年度市场准入条件
- 2024版钢筋混凝土施工安全防护用品采购合同3篇
- 激励高二的教学课件教学课件教学
- 挖掘机买卖合同书范本
- 配电自动化系统设计与实施2024年度合同
- 个人承包2024年度库房消防演练合同3篇
- 中学生养成良好学习习惯和行为习惯的主题班会
- 上海市莘庄中学等四校联考2025届高二物理第一学期期中检测试题含解析
- GB/T 44351-2024退化林修复技术规程
- 第10课《我们不乱扔》(课件)-部编版道德与法治二年级上册
- 24春国家开放大学《教育学》期末大作业
- MOOC 自然保护与生态安全:拯救地球家园-暨南大学 中国大学慕课答案
- 23秋国家开放大学《液压气动技术》形考任务1-3参考答案
- 服装流行分析与预测学习通超星课后章节答案期末考试题库2023年
- 小学六年级数学计算题100道(含答案)
- 毛滩水电站综合说明
- 海尔企业战略分析报告
评论
0/150
提交评论