初一数学:正负数提高认识讲解系列(六)_第1页
初一数学:正负数提高认识讲解系列(六)_第2页
初一数学:正负数提高认识讲解系列(六)_第3页
初一数学:正负数提高认识讲解系列(六)_第4页
初一数学:正负数提高认识讲解系列(六)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初一数学:正负数提高认识讲解系列六整数和分数统称为有理数 ,任何一个有理数都可以写成分数m/nm ,n都是整数 ,且n0的形式。无限不循环小数和开根开不尽的数叫无理数 ,比方 ,3而有理数恰恰与它相反,整数和分数统称为有理数包括整数和通常所说的分数 ,此分数亦可表示为有限小数或无限循环小数。这一定义在数的十进制和其他进位制如二进制下都适用。数学上 ,有理数是一个整数 a 和一个非零整数 b 的比(ratio) ,通常写作 a/b ,故又称作分数。希腊文称为 ,原意为“成比例的数(rational number) ,但中文翻译不恰当 ,逐渐变成“有道理的数。不是有理数的

2、实数遂称为无理数。所有有理数的集合表示为 Q ,有理数的小数局部有限或为循环。有理数分为整数和分数整数又分为正整数、负整数和0分数又分为正分数、负分数正整数和0又被称为自然数如3 ,-98.11 ,5.72727272 ,7/22都是有理数。全体有理数构成一个集合 ,即有理数集 ,用粗体字母Q表示 ,较现代的一些数学书那么用空心字母Q表示。有理数集是实数集的子集。相关的内容见数系的扩张。有理数集是一个域 ,即在其中可进行四那么运算0作除数除外 ,而且对于这些运算 ,以下的运算律成立a、b、c等都表示任意的有理数:加法的交换律 a+b=b+a;加法的结合律 a+(b+c)=(a+b)+c;存在数

3、0 ,使 0+a=a+0=a;对任意有理数a ,存在一个加法逆元 ,记作-a ,使a+(-a)=(-a)+a=0;乘法的交换律 ab=ba;乘法的结合律 a(bc)=(ab)c;分配律 a(b+c)=ab+ac;存在乘法的单位元10 ,使得对任意有理数a ,1a=a1=a;对于不为0的有理数a ,存在乘法逆元1/a ,使a(1/a)=(1/a)a=1。0a0 文字解释:一个数乘0还于0。此外 ,有理数是一个序域 ,即在其上存在一个次序关系。有理数还是一个阿基米德域 ,即对有理数a和b ,a0 ,b0 ,必可找到一个自然数n ,使nba。由此不难推知 ,不存在最大的有理数。值得一提的是有理数的名

4、称。“有理数这一名称不免叫人费解 ,有理数并不比别的数更“有道理。事实上 ,这似乎是一个翻译上的失误。有理数一词是从西方传来 ,在英语中是rational number ,而rational通常的意义是“理性的。中国在近代翻译西方科学著作 ,依据日语中的翻译方法 ,以讹传讹 ,把它译成了“有理数。但是 ,这个词来源于古希腊 ,其英文词根为ratio ,就是比率的意思这里的词根是英语中的 ,希腊语意义与之相同。所以这个词的意义也很显豁 ,就是整数的“比。与之相对 ,“无理数就是不能精确表示为两个整数之比的数 ,而并非没有道理。有理数加减混合运算1.理数加减统一成加法的意义:对于加减混合运算中的减

5、法 ,我们可以根据有理数减法法那么将减法转化为加法 ,这样就可将混合运算统一为加法运算 ,统一后的式子是几个正数或负数的和的形式 ,我们把这样的式子叫做代数和。2.有理数加减混合运算的方法和步骤:1运用减法法那么将有理数混合运算中的减法转化为加法。2运用加法法那么 ,加法交换律 ,加法结合律简便运算。一般情况下 ,有理数是这样分类的:整数、分数;正数、负数和零;负有理数 ,非负有理数整数和分数统称有理数,有理数可以用a/b的形式表达 ,其中a、b都是整数 ,且互质。我们日常经常使用有理数的。比方多少钱 ,多少斤等。但凡不能用a/b形式表达的实数就是无理数 ,又叫无限不循环小数一个困难的问题有理

6、数的边界在哪里?根据定义 ,无限循环小数和有限小数整数可认为是小数点后是0的小数 ,统称为有理数 ,无限不循环小数是无理数。但人类不可能写出一个位数最多的有理数 ,对全地球人类 ,或比地球人更智慧的生物来说是有理数的数 ,对每个地球人来说 ,可能是无法知道它是有理数还是无理数了。因此有理数和无理数的边界 ,竟然紧靠无理数 ,任何两个十分接近的无理数中间 ,都可以参加无穷多的有理数 ,反之也成立。竟然没有人知道有理数的边界 ,或者说有理数的边界是无限接近无理数的。定理:位数最多的非无限循环有理数是不可能被写出的 ,尽管它的定义是有有限位 ,但它是无限趋近于无理数的 ,以致于没有手段进行判断。证明

7、:假设位数最多的非无限循环有理数被写出 ,我们在这个数的最后再加一位 ,这个数还是有限位有理数 ,但位数比已写出有理数多一位 ,证明原来写出的不是位数最多的非无限循环有理数。所以位数最多的非无限循环有理数是不可能被写出的。关于无理数与有理数无法比拟的说明:对于定义无限不循环小数是无理数 ,无理数之外为有理数。那么无理数很难被证实 ,而每一个无理数 ,无论认识多少位 ,都有有理数对应 ,而位数较短的有理数 ,都没有无理数对应 ,因此有理数多。对于定义为有限位小数和无限循环小数为有理数 ,无限不循环数为无理数。对于很多位数多的无法分辨的数没有明确归属 ,而认为大于特定有限位的数都是无理数的人 ,才

8、能证明无理数比有理数多 ,但那明显是将很多很多有理数归为无理数的结果。在这个定义下 ,由于界限不明 ,无法进行比拟 ,除非有人能有力的证明。无限不循环小数不是有理数 ,如:0.100100000.0.120190. 等是无限不循环小数 ,所以不是有理数循环小数化分数的方法0.777777.有一个数循环 ,分母是一个9 ,循环数是7.化分数后是7/90.535353.有两个数循环 ,分母是两个9 ,循环数是53.化分数后是53/99我们可以在数轴上表示有理数.注意画数轴的三要素(原点,正方向,单位长度).1、单项式对数字和假设干个字母施行有限次乘法运算 ,所得的代数式叫做单项式单独一个数或一个字

9、母也是单项式2、系数单项式中的数字因数叫做这个单项式的系数3、单项式的次数一个单项式中 ,所有字母的指数的和叫做这个单项式的次数4、多项式几个单项式的和叫做多项式5、多项式的项在多项式中 ,每个单项式叫做多项式的项6是常数项6、常数项多项式中 ,不含字母的项叫做常数项7、多项式的次数多项式里 ,次数最高的项的次数 ,就是这个多项式的次数8、降幂排列把一个多项式 ,按某一个字母的指数从大到小的顺序排列起来 ,叫做把多项式按这个字母降幂排列9、升幂排列把一个多项式 ,按某一个字母的指数从小到大的顺序排列起来 ,叫做把多项式按这个字母升幂排列10、整式单项式和多项式统称整式。11、同类项所含字母相同

10、 ,并且相同字母的次数也相同的项 ,叫做同类项常数项都是同类项12、合并同类项把多项式中的同类项合并成一项 ,叫做合并同类项合并同类项的法那么是:同类项的系数相加 ,所得的结果作为系数 ,字母和字母的指数不变例:合并以下各式的同类项:13、去括号法那么 括号前是“+号 ,把括号和它前面的“+号去掉 ,括号里各项都不变符号; 括号前是“号 ,把括号和它前面的“号去掉 ,括号里各项都改变符号 例:a+(b-2c)-(e-2d)=a+b-2c-e+2d14、添括号法那么 添括号后 ,括号前面是“+号 ,括到括号里的各项都不变符号;添括号后 ,括号前面是“号 ,括到括号里的各项都改变符号例:m+2xy

11、+z5=m+(2xy)(z+5)15、整式的加减 整式加减的一般步骤:1.如果遇到括号 ,按去括号法那么先去括号;2.合并同类项16、代数式的恒等变形 一个代数式用另一个与它恒等的表达式去代换 ,叫做恒等变形如果我有五元钱记作 +5元 ,我欠别人五元钱记作 -5元 ,那么 +5+-5=0 代表我总共只有零元钱。那么 +5-5=10 代表什么?可不可以代表我应还别人五元钱 ,别人却反而把五元钱还给我 ,所以我共有10元钱?在系列一中提到:如果我有五元钱记作 +5元 ,我欠别人五元钱记作 5元 ,那么 5+5=0 代表我总共只有零元钱。那么 55=10 代表什么?可不可以代表我应还别人五元钱 ,别

12、人却反而把五元钱还给我 ,所以我共有10元钱?现解答如下:以上问题也可以说是正确的 ,分析如下这个问题可以从减法的根本含义来解释 ,即AB的意义有三点 ,一是表示A比B多多少? 二是表示从A中减去或拿掉、用去B后还剩多少。三 是引进负数后 ,可以人为表示为 ,即把减号当做负号 ,并插入一个加号。从以上三点分析知道:第一、可以表示 ,假设我昨天有元钱 ,今天不但没有钱反而欠别人元钱 ,那么昨天的钱就比今天的钱多元。第二、因为代表不但没有钱反而欠别人元钱 ,那么减少就是说如果少用去借来的元钱 ,那我就有现金元钱。笫三、把表示为 ,那么就表示与我欠别人元钱相反的状态即别人反而欠我元钱 ,所以这个算式

13、就可以表述为我有元钱 ,如果加上别人欠我元钱 ,我总共就有元钱晓红与小红在班上学习成绩最好且难分伯仲 ,为了明确谁是第一 ,老师给两个人的每一次考试成绩记一次综合评定分 ,规定成绩达优秀以上记+5分 ,成绩优良以下记5分。因为两人名字相近 ,老师在一次评定中本来是晓红+5分 ,小红5分却记成晓红5分 ,小红+5分 ,为弥补这一错误 ,应给晓红另外加上多少分?这是一道初看简单实际复杂的应用题 ,你有兴趣吗?答案在下期公布。我在笫三期中提到:晓红与小红在班上学习成绩最好且难分伯仲 ,为了明确谁是第一 ,老师给两个人的每一次考试成绩记一次综合评定分 ,规定成绩达优秀以上记+5分 ,成绩优良以下记-5

14、分。因为两人名字相近 ,老师在一次评定中本来是晓红+5分 ,小红-5分却记成晓红-5分 ,小红+5分 ,为弥补这一错误 ,应给晓红另外加上多少分?我为什么出这样的题目?因为类似这样的问题我身边熟悉的人从大人到学生一般都会简单地认为应给晓红加10分 ,当我答复说正确答案是20分时 ,他们几乎不相信 ,也不知如何验证 ,现解答如下:笫一种验证方法:原来晓红+5分比小红-5分多10分 ,即5-5=10。晓红加上20分后对错误的更正变成20+-5=15分 ,比照小红的错误分5分还是多10分 ,即:15-5=10。笫二验证方法:对晓红本人来说5分记成-5分减少10分 ,即5-5=10对小红来说-5记成5

15、分增加10分 ,即5-(-5)=10。所以如果对两个人的成绩都进行更正 ,就是晓红加10分 ,小红减10分。 因此 ,也可以小红不减10分 ,而再给晓红加上10分 ,即共增加20分 ,才不会影响两人成绩比照竞争。晓红与小红在班上学习成绩最好且难分伯仲 ,为了明确谁是第一 ,老师给两个人的每一次考试成绩记一次综合评定分 ,规定成绩全班第一名得5分 ,第二名至第六名不得分 ,第七名以下反扣5分。晓红在两次数学单元测试中本来都会得第一名 ,但因其计算粗心 ,结果成绩如下:第一单元小红第一名 ,晓红第六名;弟二单元小红笫六名 ,晓红第七名。问晓红因粗心造成两次考试共损失多少分?在系列五中提到:晓红与小

16、红在班上学习成绩最好且难分伯仲 ,为了明确谁是第一 ,老师给两个人的每一次考试成绩记一次综合评定分 ,规定成绩全班第一名得5分 ,第二名至第六名不得分 ,第七名以下反扣5分。晓红在两次数学单元测试中本来都会得第一名 ,但因其计算粗心 ,结果成绩如下:第一单元小红第一名 ,晓红第六名;弟二单元小红笫六名 ,晓红第七名。问晓红因粗心造成两次考试共损失多少分?要解这道题 ,先讲两个问题:笫一是直接损失与间接损失问题。在这道题中 ,直接损失是指晓红因为粗心造本钱人分数的减少;间接损失是指竞争对手小红因为晓红的粗心而增加的分数 ,因为小红分数增加了多少分 ,晓红与其比照就相对减少了多少分。第二是名次唯一

17、与名次并列问题。在这道题中 ,名次唯一是指不管哪一个名次都仅有一人 ,即如果晓红认真考了第一名 ,其他人的名次就相应后退一名;名次并列是指一个名次有两人并列 ,即其他人的名次不因晓红而改变 ,只是第一名名次与晓红并列而已。所以这道题如果没有假定条件 ,准确地说就要分以下四种情况来解答。一、假定两次考试都是名次唯一在第一次考试中晓本来会得十5分 ,实际第六名得零分直接损失5分 ,在第二次考试中本来会得5分 ,实际第七名得5分直接损失10分 ,两次共直接损失15分。小红第一次得5分 ,而如果晓红取得笫一名她只能退居第二名得零分 ,增加5分;第二次得零分 ,而如果晓红取得笫一名她只能退居第七名得分

18、,增加分 ,两次共增加分就是晓红间接损失分。直接损失加间接损失共分 ,这就是晓红的损失分。二、假定两次考试都是名次并列这种情况下晓红只有直接损失分 ,而没有间接损失。三、假定第一次考试是名次唯一 ,笫二次考试是名次并列在这种情况下晓红直接损失分 ,间接损失分 ,共损失分。四、假定笫一次考试是名次并列 ,第二次考试是名次唯一在这种情况下晓红直接损失分 ,间接损失分 ,也是共损失分。滑冰场的A点在数轴上150处 ,B点在数轴上的150处 ,小王从A滑到B或从B点退滑到A都是用时1小时。1、如果他以前进3秒再后退2秒的方式滑行 ,那么从A滑到B要用时多久?2、如果他以前进5秒后退3秒的方式滑行 ,那

19、么从A滑到B要用时多久?解:A到B的距离等于1501503001小时360秒300÷3605/6即每秒前进5/6 ,从A到B共有360个5/61、依题意 ,小王实际每5秒钟滑行1个5/6。当滑至第359个5/6又后退到第357个5/6时 ,用时357×51785秒。从第357个5/6滑至B点共用时3秒 ,所以总用时为178531788秒2、依题意 ,小王实际每8秒钟前进2个5/6 ,按此方式滑行至第359个5/6又后退到第356个5/6时 ,共用时8×356/21424秒 ,从第356个5/6滑到B点共用时4秒 ,所以总用时为142441428 秒。1细心地开掘概

20、念和公式很多同学对概念和公式不够重视 ,这类问题反映在三个方面:一是 ,对概念的理解只是停留在文字外表 ,对概念的特殊情况重视不够。例如 ,在代数式的概念用字母或数字表示的式子是代数式中 ,很多同学忽略了“单个字母或数字也是代数式。二是 ,对概念和公式一味的死记硬背 ,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是 ,一局部同学不重视对数学公式的记忆。记忆是理解的根底。如果你不能将公式烂熟于心 ,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点观察特例 ,更深入一点了解它在题目中的常见考点 ,更熟练一点无论它以什么面目出现 ,我们都能够应用自如。2总结相似的类型题

21、目这个工作 ,不仅仅是老师的事 ,我们的同学要学会自己做。当你会总结题目 ,对所做的题目会分类 ,知道自己能够解决哪些题型 ,掌握了哪些常见的解题方法 ,还有哪些类型题不会做时 ,你才真正的掌握了这门学科的窍门 ,才能真正的做到“任它千变万化 ,我自岿然不动。这个问题如果解决不好 ,在进入初二、初三以后 ,同学们会发现 ,有一局部同学天天做题 ,可成绩不升反降。其原因就是 ,他们天天都在做重复的工作 ,很多相似的题目反复做 ,需要解决的问题却不能专心攻克。久而久之 ,不会的题目还是不会 ,会做的题目也因为缺乏对数学的整体把握 ,弄的一团糟。我们的建议是:“总结归纳是将题目越做越少的最好方法。3

22、收集自己的典型错误和不会的题目同学们最难面对的 ,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目 ,有两个重要的目的:一是 ,将所学的知识点和技巧 ,在实际的题目中演练。另外一个就是 ,找出自己的缺乏 ,然后弥补它。这个缺乏 ,也包括两个方面 ,容易犯的错误和完全不会的内容。但现实情况是 ,同学们只追求做题的数量 ,草草的应付作业了事 ,而不追求解决出现的问题 ,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目 ,是因为 ,一旦你做了这件事 ,你就会发现 ,过去你认为自己有很多的小毛病 ,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂 ,现

23、在发现原来就这几个关键点没有解决。我们的建议是:做题就像挖金矿 ,每一道错题都是一块金矿 ,只有开掘、冶炼 ,才会有收获。4就不懂的问题 ,积极提问、讨论发现了不懂的问题 ,积极向他人请教。这是很平常的道理。但就是这一点 ,很多同学都做不到。原因可能有两个方面:一是 ,对该问题的重视不够 ,不求甚解;二是 ,不好意思 ,怕问老师被训 ,问同学被同学瞧不起。抱着这样的心态 ,学习任何东西都不可能学好。“闭门造车只会让你的问题越来越多。知识本身是有连贯性的 ,前面的知识不清楚 ,学到后面时 ,会更难理解。这些问题积累到一定程度 ,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。讨论是一种非常好的

24、学习方法。一个比拟难的题目 ,经过与同学讨论 ,你可能就会获得很好的灵感 ,从对方那里学到好的方法和技巧。需要注意的是 ,讨论的对象最好是与自己水平相当的同学 ,这样有利于大家相互学习。我们的建议是:“勤学是根底 ,“好问是关键。5注重实战考试经验的培养考试本身就是一门学问。有些同学平时成绩很好 ,上课老师一提问 ,什么都会。课下做题也都会。可一到考试 ,成绩就不理想。出现这种情况 ,有两个主要原因:一是 ,考试心态不不好 ,容易紧张;二是 ,考试时间紧 ,总是不能在规定的时间内完成。心态不好 ,一方面要自己注意调整 ,但同时也需要经历大型考试来锻炼。每次考试 ,大家都要寻找一种适合自己的调整

25、方法 ,久而久之 ,逐步适应考试节奏。做题速度慢的问题 ,需要同学们在平时的做题中解决。自己平时做作业可以给自己限定时间 ,逐步提高效率。另外 ,在实际考试中 ,也要考虑每局部的完成时间 ,防止出现不必要的慌乱。我们的建议是:把“做作业当成考试 ,把“考试当成做作业。以上 ,是我就初一数学经常出现的问题给出的一点建议 ,但要强调的是 ,任何方法最重要的是有效 ,同学们在学习中千万要防止形式化 ,一定要追求实效。有理数的加法运算同号两数来相加 ,绝对值加不变号。异号相加大减小 ,大数决定和符号。互为相反数求和 ,结果是零须记好。单靠“死记还不行,还得“活用,姑且称之为“先死后活吧。让学生把一周看

26、到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即稳固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,到达“一石多鸟的效果。观察内容的选择 ,我本着先静后动 ,由近及远的原那么 ,有目的、有方案的先安排与幼儿生活接近的 ,能理解的观察内容。随机观察也是不可少的 ,是相当有趣的 ,如蜻蜓、蚯蚓、毛毛虫等 ,孩子一边观察 ,一边提问 ,兴趣很浓。我提供的观察对象 ,注意形象逼真 ,色彩鲜明 ,大小适中 ,引导幼儿多角度多层面地进行观察 ,保证每个幼儿看得到 ,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法 ,即按顺序观察和抓住事物的不同特征重点观察 ,观察与说话相结合 ,在观察中积累词汇 ,理解词汇 ,如一次我抓住时机 ,引导幼儿观察雷雨 ,雷雨前天空急剧变化 ,乌云密布 ,我问幼儿乌云是什么样子的 ,有的孩子说:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论