扩散习题与解答_第1页
扩散习题与解答_第2页
扩散习题与解答_第3页
扩散习题与解答_第4页
扩散习题与解答_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、自扩散:是在纯金属中的原子或固溶体中的溶质原子由一个平衡位置迁移到另一个平衡位置的单纯由热运动引起的扩散现象。化学扩散:间隙扩散:间隙扩散是扩散原子在点阵的间隙位置之间跳迁而导致的扩散。间隙固溶体中溶质原子半径较小,间隙位置数目较多,易发生间隙扩散。置换扩散:置换扩散以原子跳动到邻近空位的方式进行,因此认为置换扩散也应该是通过单独跳动机制进行的。它与间隙扩散的区别在于跳动是通过空位进行的,即扩散机制是一种空位扩散机制。互扩散:是溶质原子和溶剂原子同时存在迁移的扩散。严格来讲,大部分合金系统的原子扩散都是互扩散。晶界扩散:熔化的钎料原子沿着母材金属的结晶晶界的扩散现象。晶界扩散所需要的激活能比体

2、扩散小,因此,在温度较低时,往往只有晶界扩散发生。而且,越是晶界多的金属,越易于焊接,焊接的机械强度也就越高。上坡扩散:原子扩散的驱动力是化学位。在一般情况下,总是从浓度高处向浓度低处扩散,这叫顺扩散,但有时也会发生从浓度低处向浓度高处扩散的现象,成为逆扩散,即上坡扩散。2、什么叫原子扩散和反应扩散 ?原子扩散是一种原子在某金属基体点阵中移动的扩散。在扩散过程中并不产生新相,也称为固溶体扩散。扩散物质在溶剂中的最大浓度不超过固溶体在扩散温度下的极限浓度,原子扩散有自扩散,异扩散和互扩散三类。扩散过程不仅会导致固溶体的形成和固溶体成分的改变,而且还会导致相的多形性转变或化合物的形成。这种通过扩散

3、而形成新相的现象称为反应扩散,也叫相变扩散。3、什么叫界面控制和扩散控制?试述扩散的台阶机制 ?简要解答 生长速度基本上与原子的扩散速率无关,这样的生长过程称为界面控制。相的生长或溶解为原子扩散速率所控制的扩散过程称为扩散控制。如题3图,相和相共格,在DE、FG处,由于是共格关系,原子不易停留,界面活动性低,而在台阶的端面CD、EF处,缺陷比较多,原子比较容易吸附。因此,相的生长是界面间接移动。随着CD、EF的向右移动,一层又一层,在客观上也使相的界面向上方推移,从而使相生长。这就是台阶生长机制,当然这种生长方式要慢得多。题3图 台阶生长机制 4、扩散的驱动力是什么?什么是扩散热力学因子 ?驱

4、动力类型主要有化学自由能,应变自由能和界面自由能。化学自由能是指一个相没有应变区,自由能随温度的变化比较大;应变自由能是指由短或长范围的引起的自由能增量;界面自由能是相界面或晶界处原子的额外自由能。在实际情况中,有些状态是包含了各种自由能,是难以完全分开的。自然界事物变化都遵循最小自由能原理,其途径都遵循最小耗能原理。原子运动也总是力图使系统的能量降低,即使暂时还未具备转变的条件,但转变的潜在趋势是存在的。而且也遵循最小耗能原理或最小阻力原理。扩散热力学因子5、显微结构的不稳定性主要是由哪些因素造成的 ?显微组织结构的稳定性是在一定条件下相对稳定的程度。显微组织的不稳定性需要有激活能和驱动力,

5、这激活能可由热起伏和能量起伏提供;驱动力的类型主要由化学自由能、应变自由能和界面自由能。不稳定的因素是随环境条件而变化的。例如,晶粒大小事影响组织稳定性的因素之一,在室温时,晶粒细小能提高材料性能;而在高温时,细小的晶粒相对来说是不稳定的,会长大。6、什么是Gibbs-Thomson效应?写出其表达式。在第二相析出量基本达到平衡态后,将发生第二相的长大粗化和释放过剩界面能的物理过程,该过程是由于小质点具有较高溶解度引起的。小质点的表面积与体积之比较大,相对来说是不稳定的,有溶解的趋势,而系统中的大质点则会长大。描述这个过程的是著名的Gibbs-Thomson效应,其表达式为:7、什么是Ostw

6、ald Ripening Process ? 写出描述其过程的表达式,总结其过程规律 ?当母相大致达到平衡浓度后,析出相以界面能为驱动力缓慢长大的过程为奥斯特瓦德熟化过程(Ostwald Ripening Process)扩散控制的Ostwald长大规律的表达式为:析出粒子的长大速率随粒子大小的变化规律如图所示,总结如下:.当r=,dr/dt=0.当质点半径rr时,这些质点都会溶解,即dr/dtr时,这些质点都会溶解,即dr/dt0.对表达式求极值得到r=2r,所以当r=2r时,dr/dt为极大值,粒子的长大速率最大。当r2r时,质点的长大速率dr/dt逐渐降低。在长大过程中,当r增大时,所有

7、析出粒子的长大速率dr/dt均降低。温度的影响是比较复杂的,表达式中的分子上有扩散系数D,分母上有温度的直接作用,两者的作用是相反的。综合效果往往是温度提高,可增加粒子的长大速率。体系过程刚开始时。r稍大于r的质点,它们的长大速率小于体系中粒子的平均长大速率,所以这样的质点8、在500时,Al在Cu中的扩散系数为2.610-17 m2/s,在1000时的扩散系数为110-12 m2/s。求:1)这对扩散偶的D0 、Q值;2)750时的扩散系数。9、 当Zn向Cu内扩散时,已知:X点处的Zn含量为2.510-17 a/cm3,在离X点2mm处的Y 点,在300时每分钟每mm2要扩散60个原子。问

8、:Y点处的Zn浓度是多少 ?10、将Al扩散到硅单晶中,问:在什么温度下,其扩散系数为10-14 m2/s ? (已知:Q = 73000 cal./mol, D0 = 1.5510-4 m2/s )11、在1127某碳氢气体被通入到一低碳钢管(管长1m,管内径8 mm,外径12 mm)。管外保持为纯氢气氛,有可能使管外表面的碳活度降低到最低限度。假设在碳氢气体中的碳活度是很高的,以致于在气氛中有固体颗粒碳。已知:在1127时,碳的扩散系数为D = 610-6 cm2/s。试计算通碳氢气体100小时后,会有多少碳扩散到管的外面来 ? 简要解答 该题是二维稳态扩散,可应用公式:现已知:l=100

9、cm, r1=0.8cm, r2=1.2cm, C2=0, t=36104 s.应该注意:左右两边的量纲单位要统一。已知条件中的单位要换算。由Fe-C相图知,1400K时C在奥氏体中最大固溶度为2%(质量分数), (C的密度为2.5g/cm3 ,Fe的密度7.8 g/cm3 )将已知条件代入公式得到:M = 2 3.1416 100 6 10-6 ( 0.15 / ln1.5 ) 36 104 502 (g)答:100小时后,将有约502 g的碳扩散到管外来。12、有一容器,其外层是低碳钢,里层为不锈钢。里层的厚度是外层的1/100。现容器内充有氢气。已知:在试验温度下,低碳钢为相,不锈钢为相

10、;在这温度下氢气在、两相界面处的重量百分浓度分别为C=0.00028%,C=0.00045% ;并假设在试验温度下,D=100 D。试问哪一层对阻止氢气的向外扩散起了决定性作用 ?简要解答 这是两相系统中的稳态扩散问题,且该两层厚度与扩散物质H无关。所以有:扩散物质的流量主要决定于具有最大值的那个相,即这个相对扩散物质具有最大的阻力,所以在只要计算比较两个相的值,就可以知道了。因为,。因为,对外层低碳钢: 对里层不锈钢:所以,外层低碳钢/里层不锈钢 = 因此,外层低碳钢对阻止氢气的向外扩散起了决定性作用。13、某低合金过共析钢(含0.9%C)被加热到800,形成了奥氏体组织,然后被快速冷却到A

11、1温度以下保温,直到完全转变成珠光体组织。因为是过共析钢,所以在珠光体转变前有自由渗碳体析出,会沿着晶界析出一层厚的渗碳体,损害钢的性能。已知:在550、650珠光体转变完成时间分别为10秒和10分钟。试计算在550转变的危害性大,还是650时转变的危害性大 ?简要解答 用晶界薄膜沉淀公式,在两温度下比较它们的的值:取公式计算D值。由Fe-C相图查得:650时,;550时,。 , 由此可知:650时转变要比550时转变危害性大。14、一种没有合金化的具有粗大片状石墨的灰口铸铁,以相当缓慢的冷却速率通过A1温度。发现其组织特点为:金属基体相主要是珠光体,但是每一片石墨都被一层先共析铁素体包围。假

12、设通过试验已经知道,需要作为珠光体形核核心的渗碳体,直到710还不可能形成,另一方面,铁素体却很容易形核,如果冷却速率为1K / min 。取C的扩散系数为:D=0.02exp(Q / RT), Q=83600 J / mol。计算一下会形成多厚的铁素体层。作为近似计算,可认为是在中间温度区间的一个等温反应过程。如果是球状石墨周围形成了所谓的牛眼状铁素体(如题14图),在放大500倍条件下,经测量铁素体平均厚度为6.5mm,在以上条件下,试估算其冷却速率。题14图 铸态球铁珠光体+铁素体+球状石墨(500X)简要解答 用新相在原两旧相间形成长大(书2.30式),根据题目改变符号有: , 等温温

13、度T取(723+710)/2 = 717;因为速度V为1K / min,所以等温时间t = T/V = (723-710) / 1 = 13min。取:=0.025,=0.85,=0.025。这里分子、分母都有浓度,所以可直接用质量分数代入就可。经计算D = 0.7410-6 cm2/s 。将有关数据代入公式得: ,对于如图所示的牛眼状铁素体,经测量牛眼状铁素体环形厚度为6.5mm,放大500倍,所以实际厚为0.013mm。求冷却速率,先需求得时间t。(图的倍数已不正确了) ,t = 37.7s V = T / t = 13 / 37.7 = 0.345 K / s = 20.7 K / mi

14、n 如采用原题片状铁素体的条件,采用球状长大相公式,求平均扩散距离R2 :R2 = 0.0125cm (边界条件并不很吻合,因为C原子同时向石墨和奥氏体中扩散) 根据照片设球形石墨的平均半径与牛眼状铁素体环形厚度相当,牛眼状铁素体环形厚度=R2 r(部分球形石墨)= 0.0125 - 0.0059 = 0.0066cm15、为避免镍和钽直接反应,在镍和钽片中间插入一层厚0.05cm的MgO,如题15图所示。在1400时,Ni离子将通过MgO层向钽片扩散,试计算Ni离子每秒的扩散量。已知Ni离子在MgO中的扩散系数为910-12 cm2 / s,在1400时,Ni的点阵常数是3.610-8 cm

15、。题15图 镍通过MgO层的扩散偶简要解答 在Ni/MgO界面上,Ni为100%,或:在Ta/MgO界面上,Ni为0%,这样,浓度梯度就可得到:Ni原子通过MgO层的扩散流量为: Ni原子/(cm2s)Ni原子在每秒通过2cm2cm界面的总量为: (Ni原子/ s)Ni原子从Ni/MgO界面上每秒离开的量:或Ni层厚度的每秒减少的量:如10-4 cm的Ni层要扩散消失,需时间为:16、直径3cm、长10cm管子,一端装有浓度为0.51020atoms/cm3的氮(N)和0.51020atoms/cm3的氢(H),另一端装有1.01018atoms/cm3的氮和1.01018atoms/cm3的

16、氢,中间用一体心立方结构的铁膜片隔开,如题16图所示。气体不断地引入这管子以保证氮和氢的浓度为常数。整个系统都是在700下进行。系统设计要求每小时扩散通过该膜片的氮不超过1%,而允许90%的氢通过该膜片。试设计该膜片的厚度。已知:在700的体心立方晶体铁中,N原子的扩散系数D=3.6410- 7 cm2/s,氢原子的扩散系数D=1.8610-4 cm2/s。题16图 铁膜片设计示意图简要解答 容器中N原子的总量为:(0.5 1020 N/cm3)( / 4)( 3cm )2 ( 10cm ) = 35.343 1020 N原子系统损失N的最大量为1% ,每小时损失的N 原子为:(0.01)(

17、35.3431020 ) = 35.3431018 N原子/ h =0.00981018 N原子/s所以其扩散流量: N原子/(cm2s)N原子在700在体心立方晶体中的扩散系数经计算为:D=3.6410-7 cm2/s N原子/cm3 (最小的厚度)允许90%的氢通过的最大厚度,用同样的方法可得到。每小时氢的损失W:W = 0.90 35.343 1020 = 31.80 1020 , 每秒氢的损失为0.00881020 .J = 0.125 1018 H原子/(cm2s)已知氢原子的扩散系数D=1.8610-4 cm2/s,所以 (最大的厚度)因此,管的厚度在0.0128cm 0.0729

18、cm之间是安全的。17、设计一厚度为2cm储存氢气的球罐。要求每年由于扩散损失的氢气小于50kg,球罐的温度保持在500。球罐可用镍、铝、铜、铁金属来制造,氢气在这些金属中的扩散参数和用镍、铝、铜、铁金属来制造球罐的成本如表所示。题17表 球罐的制造成本和氢气的扩散参数材料D0 / (cm2 / s)Q / (J / mol)成本 ($ / 1b)Ni0.005589004.1834.10Al0.16103404.1830.60Cu0.01193804.1831.10Fe(BCC)0.001236004.1830.15 答案要点 分析:不同材料的扩散系数不同,在相同情况下,H2的损失也不同。题

19、意为从性能、成本方面选择设计的储存H2的球罐。以每年50kg H2为准,计算各材料球罐的体积,由材料密度和成本单价来计算比较球罐的总费用,来决定选择什么材料制造。计算数据的准备:各材料的密度:Ni = 8.90 g/cm3 ; Al = 2.70 g/cm3; Cu = 8.92 g/cm3; Fe =7.86 g/cm3 。各材料的扩散系数:D Ni =1.6810-5 cm2/s ; D Al =1.9110-4 cm2/s; D Cu =2.4510-5 cm2/s; D Fe =1.1510-4 cm2/s 。球罐的体积:V=4/3(r23 - r13),V =4/3(r2-r1)(4

20、+3r1r2)。经查有关图,H2在铁中的固溶度(500,质量百分数)为0.00015% 。成本单价中“lb”换算成kg ,lb = 0.454kg ,用符号f来表示。所以,fNi = 9.03 $ / kg , fAl = 1.32 $ / kg , fCu = 2.42 $ / kg , fFe = 0.33 $ / kg 。近似设H2在各材料中的最大固溶度C都相同,为计算方便,量纲换算成g/cm3 . (0.0899为H的密度)首先计算Fe球罐的费用FFe ,根据稳态扩散的球壳公式,可得到: (这里,C2为0)代入有关数据,注意单位、量纲的统一。可得:量纲分析: 因为球罐体积, ,为总费用

21、。所以: , (其中,) $因为每年都损失50kg的H2 ,其他材料以铁为标准,或单独计算。经比较: , $同理,可计算得到: $ ; $ 所以,根据计算比较: 。但铝(Al)的熔点约为660 ,铝合金的固溶温度一般在500 左右,因为题意要求球罐保持在500 下工作,铝罐的性能不能保证,故淘汰铝罐。所以,根据性能和成本综合考虑,用铁制造球罐是最好的,实际上是钢制球罐。18、一共析碳素钢在A1温度于湿氢中进行脱碳处理,在钢的表面会形成一铁素体层。该铁素体层将以一定速率增厚,增厚的速度由通过表面铁素体层的碳扩散速率来控制的。取扩散系数D = 3.610-7 cm2/s。试分别用稳态近似法和Wag

22、ner方法计算,表面铁素体层长到1mm厚需要多长时间 ?简要解答 设共析含C量为0.78(质量分数),A1=723。Wagner方法: , , , ,t = 133.9 h稳态近似法:用Fick第一定律的近似公式求解: , 在这种情况下两者的计算方法所得结果是相近的。19、含有0.3%C和1%Al的钢,淬火后进行回火,然后在550氮化处理25小时。如果氮在-Fe中的溶解度为。问氮化层有多厚 ?简要解答 氮化后钢的表层组织是含有许多AlN颗粒的铁素体。Al和N结合力很强,形成AlN,所以可由Al含量估算出N量。N在-Fe中的溶解度取决于气体中N的活度,近似用表示。渗入的N只有通过氮化层在与相的界

23、面处发生反应而不断生成AlN,使氮化层增厚。反应过程如题19图所示。题19图 氮化过程界面处反应情况示意氮在-Fe中溶解度(550): ,%N = 0.402 。基本上是属于稳态扩散问题,经质量平衡原理可得到: , 或 (质量分数)式中,和分别为Al和N在钢中的含量,Al原子量27,N原子量14。经查附表6有关数据有:,计算得 。 ,氮化层大约有1mm厚20、在缓慢冷却过程中,亚共析钢中已产生了铁素体和珠光体交替隔开的带状组织,为消除这种带状组织,需要进行扩散退火。由实验知,厚度为25mm的钢板在900进行扩散处理,大约两天就够了。如果把这种钢板进一步轧制成5mm厚的钢板,并在1200进行扩散

24、,问:需要处理多长时间才能得到与前面同样的效果 ? 假设Q=20000R。简要解答 该问题就是使轧制后的振幅降为原来的1/5。达到同样的效果,则: s ,假设Q=20000R,则:t = 215 s仅需要处理215秒时间就能得到与前面同样的效果。21、碳素钢的魏氏组织是在较快冷却速度下得到的组织。但是这种组织首先是在含有10%Ni的陨石中发现的,陨石中片状组织的厚度可达到5mm,估算一下陨石必须具有多快的冷却速度,才能形成这种组织 ? 计算时使用以下数据:如碳素钢以100K/s的冷速,可以得到2厚度的铁素体。简要解答 简单地估计,设两种情况的扩散系数是相同的,铁素体的厚度是和冷却速度成反比的,

25、即冷却速度越慢,则铁素体越长大,厚度也越厚。厚度与时间是平方的关系,即 t 。所以: ,K/年非常缓慢的,难以使人相信。22、在银的表面已经沉积了一层银的放射性元素,然后将整个系统进行退火,放射性元素将要扩散进入内部。为了使深度为L的地方得到最高的放射性元素,必须中止退火工艺。如在试样表面沉积了m居里/cm2的放射性元素,计算在L处的最高浓度是多少 ?简要解答 这是高斯解的问题,S = 2m居里/cm2 ,所以,方程式为:对上式求导,并令为0 ,可得到 : , 代入方程得:23、在奥氏体中硼(B)的含量对钢的淬透性有很大的影响,即使只有0.001%的含量,对奥氏体转变还有明显的作用。假定在钢的

26、表面涂了一层硼,其量为1mg/cm2。把钢加热到900,保温15分钟进行奥氏体化,这时硼要向里面扩散。已知:硼的密度为2.34g/cm3, 硼在-Fe中的扩散系数尚未测定,假设硼是碳在-Fe中扩散系数的1/10,设碳在-Fe中扩散系数为D = D0exp(Q/RT),其中D0 = 0.372 cm2/s,Q=148000 J/mol。问硼对奥氏体转变发生影响的表面层有多厚 ?简要解答 根据题意,应用高斯解,求含0.001%B的深度。t=1560=900 s高斯解:浓度单位需要换算:将数据代入公式: y = 0.019cm = 0.19mm24、通过把一块相当薄的A板夹在两块厚的B板中热轧,制成

27、一种复合板。如果在A板表面染上了一种物质C,因此,在复合板以后的退火工艺中,C物质将扩散进入A和B板复合板。设C物质在A和B板中有相同的溶解度与扩散系数。试计算:在什么时候在A层中心将会得到最高的C含量 ?这个数值有多高 ?简要解答 根据题意,应采用两个高斯解函数,并设置如题24图的坐标。题24图 浓度分布及系统坐标在y=d时,其浓度为:根据题意,要求得A层中心获得最高C含量的时间t ,及最高C含量的值。对上式求导,并令其导数为0,可得: ,将其代入方程得:25、含0.5%C的碳素钢不幸在750脱碳了,因此在钢的表面形成了一层铁素体,经测定,它的厚度为0.1mm。如将此材料在保护气氛中加热到1

28、000进行热处理,碳将会由内向外表面扩散。为了使表面的碳含量达到0.2%,问需要热处理多长时间 ? 已知:D = 0.372exp(148000/RT) cm2/s简要解答 1000,样品处于奥氏体状态。根据题意,应该用两个误差解。设:近似设脱碳层中的碳含量为0,脱C层厚为h,如图。初始条件和边界条件为:t = 0, y-h , 0.5=A-B-C; t = 0, -hyh , 0.5=A+B+C A = 0.5 ,B = -0.25 ,C = 0.25 。经计算D=0.3110-6 cm2 / s 。 (该式也可以直接引用)现在要求y=0处,当C=0.2%时,所需要的时间t = ? .代入数

29、据: , 查表得: 该题也可用正弦解方法来求解,但计算结果有差别。26、含0.85%C的钢制模具在空气炉中加热到900,保温1小时,模具表面脱碳后的表面浓度为0%。模具技术条件要求模具表面最低含碳量为0.80%C。已知在900时碳的扩散系数为,=0.21cm2/s,=142103 J/mol。试计算热处理后模具的最小切削余量。简要解答 可直接采用脱碳公式来计算。这里,C0 为0.85% ,C为0.80 ,t = 3600s , 经计算D=0.9410-7 cm2/ s 。 ,x=0.0493cm热处理后模具的最小切削余量0.5mm 。27、用一层薄的奥氏体不锈钢和一层厚的结构钢轧制在一起,制造

30、复合钢板。在热轧时结构钢中的碳将会向不锈钢中扩散,因而有可能在不锈钢晶界上发生碳化铬的沉淀,从而影响复合板的性能。如果热轧本身是很快的,而后的冷却过程却很慢,假设相当于在850等温处理30分钟,试计算一下这种危害有多大 ? 假定轧制后的不锈钢厚度为0.1mm,原来的碳量为0.03%,结构钢的碳量为0.4%。假定在不锈钢外表面层中的碳量达到0.1%时将会发生危险。同时还假定在两种钢的奥氏体中的碳活度系数相同(当然不是很好的近似)。已知:D = D0exp(Q/RT),其中D0 = 0.372 cm2/s,Q=148103 J/mol。如果要使不锈钢的含C量控制在0.1以下,工艺措施上如何改进?简

31、要解答 画出浓度分布示意图,如题27图所示。设轧制后界面是冶金结合的。题27图 复合钢板在不锈钢中的浓度分布可用两个误差函数解,一般式为:扩散时间比较短时,可近似设。求A、B、C常数:初始条件:y=0, -0.005 y 0.005时:A + B C = 0.03边界条件:t = t ,y = - 0.005 , A C = 0.4;t = t,y = 0.005, A + B = 0.4所以:A = 0.77,B = - 0.37,C = 0.37 计算可得D(850)= 4.86 10-8 cm2 / s , h = 0.005cm ,t = 1800 s 。要计算:当y=0时,C=? ,

32、将有关数据代入: C = 0.77 - 0.74 0.297 = 0.55 ,实际情况最高为0.40,说明原工艺是危险的。如果要使不锈钢的含C量控制在0.1以下,工艺措施上如何改进?计算可得:t=92s 。即在850时停留的时间只能在92秒之内。28、18-8型奥氏体不锈钢如果被加热到一临界温度范围内,则对晶界腐蚀很敏感。在热处理过程中,碳化铬(主要是Cr23C6型)会在晶界上沉淀析出,沿着晶界产生一层贫铬的奥氏体,从而失去了耐蚀性。1)假设:在12%Cr时,不锈钢的耐蚀性就消失;热处理过程为在600保温10分钟;在600时立即形成碳化铬核心,而且吸收铬是非常有效,以致在碳化铬和奥氏体界面上的

33、铬全部消失;碳化铬的厚度可忽略。已知:铬在600时在奥氏体中的扩散系数为= 510-17 cm2/s,试计算贫铬层的厚度 ?2)假设该不锈钢经600保温10分钟的处理后,碳化铬析出已经稳定,即以后不再析出碳化铬了。如果要消除这已经产生的晶界贫铬层,需要在这温度下保温多长时间 ?简要解答 (1) 根据题意,类似于表面脱碳情况,可用误差解。设一般表达式为:初始条件:C(y,0) = A + B erf () = A + B = 18边界条件:C(0,t) = A + B erf (0) = A = 0 (当t 0 ,y = 0时) 。当y=l时,C=12, 因为只计算了晶界的半边,所以实际晶界贫化

34、区厚度为5.72nm(2) 近似地简化晶界处贫化区的浓度分布,如图。用两个误差解,由边界条件有:现在要求,当y = 0,C = 12时,t = ? 。这里的h即是上面求得的2.86nm.代入数据:所以在600保温10分钟后,晶界上的贫化区厚度为5.72nm;为消除这贫化区,需要在600保温继续保温1小时左右即可消除。该题(2)也可用正弦解,这种情况用误差解的误差是比较大的。29、假定有一含0.2%C的碳素钢,其中C主要存在于宽度为10微米()的带状珠光体组织中。有人企图直接用高频感应加热淬火方法来硬化表面,假设高频感应加热淬火温度为1000,时间为1秒。为了使奥氏体中碳含量的变化范围控制在0.

35、01%C,估算一下这样的加热是否足够 ?简要解答 假设在1000高频感应加热条件下,奥氏体形核非常快。可应用正弦解方法估算。含C量均为质量分数,C0为0.2% , Cmax 为7.14%(渗碳体中含C量,12/(563), Cmin 设为0 ,为0.001cm。扩散系数D采用D=0.372exp(-148000 / RT) (cm2/s),计算得D = 3.1 10-7 cm2 / s 。利用振幅公式: ,t = 0.48 s高频感应加热淬火10001秒,可使奥氏体中碳含量变化范围控制在0.01%C。30、某试样原来不含B元素,在其表面涂了一层B元素,其量为M g /cm2。然后在合适的温度下

36、保温t时间。试写出浓度分布式C( y , t )。为了使深度为L的地方获得最高的B元素含量,必须保温合适的时间。试求:在L处获得最高浓度所需的时间是多少? L处的最高浓度值是多少? 简要解答 根据题意,其边界条件适用高斯大解。表面量为M g /cm2 ,在实际应用公式时应为2M。浓度分布式C( y , t )为: 对上式求导,并令其为0 ,即当时,可得到 : , 代入方程得:31、有一块含30%Zn的黄铜,其成分分布不均匀,在宽度为0.03mm的平行带中的Zn含量为40%。设平行带是等距离分布的,在平行带中间的Zn含量为29%,如题31图所示。为了使其成分均匀,加热到815退火,退火后允许Zn

37、含量的最大偏差为0.01%,问需要退火多长时间 ?已知:在815时,Zn的扩散系数为DZn = 6.8610-10 cm2/s 。简要解答 根据图中所示的Zn在黄铜中的不均匀性分布情况,较适宜采用正弦解。由几何关系,先需要计算出波长:因为L(30-29)= 0.003(40-29) ,所以L=0.033cm,实际扩散距离为=L/2=0.0165cm。根据对称的方波基波振幅表达式可计算出基波的振幅。题31图 Zn在黄铜中的不均匀分布(平均成分为30%Zn) ,其中= 其基波的振幅将随时间而衰减,即: 0.5308105 s 14.7h计算结果:要达到退火后偏离平均成分最大偏差为0.01%Zn,需

38、要退火15小时左右。32、一奥氏体不锈钢试样在1000进行热处理,不幸在开始1.5分钟内,保护气氛失效,以致在表面发生了渗碳。设气氛为恒定碳势,渗碳时不锈钢表面的碳含量可达到1.0%C。但在不锈钢中允许的碳含量应0.04% ,设碳在1000时的扩散系数为D = 310-7 cm2/s。1)由于碳的有害作用是由表向里扩展的,设原不锈钢试样中含碳量为0,试求渗碳1.5分钟后,使试样表面层的性能受到损害的深度是多少 ?2)在1.5分钟后,保护气氛恢复了作用。保护气氛与不锈钢之间没有碳的交换。在1000长期保温后,开始1.5分钟所吸收的碳会扩散到钢的内部,在保温期间,使钢表层内含碳量达到的最大有害深度

39、是多少 ?3)如果使碳在表层中的有害作用完全消除,问至少要保温多长时间才可消除碳的有害影响?简要解答 1)因为假设是在恒定碳势下渗碳一分钟,所以就可以用误差函数解来求得深度。 计算结果:渗碳一分钟后,使试样表面层的性能受到损害的深度是0.127mm。2)长期保温时,表面吸收的碳会向内部扩散(题32图1)。但在一定范围内,在深度处的浓度值是变化的(题32图2)。若令,则可求得达到最高浓度时所需的时间。然后,再可求得最高浓度值与深度之间的关系,从而求得最大深度。题32图1 不同时间处理时的浓度分布 题32图2 经过不同时间处理后在x1处的浓度在数学上即对函数求导可求得极值点位置及极值。这时的扩散应

40、该用高斯解。但不知高斯方程式中的S量。近似处理,S值可由前述的公式积分求得: 对高斯解有:令:可有: ,对应的即是最大深度。当然,在这里也可直接用平均扩散距离求得。将代入高斯解可得到:根据题意,要求的最大深度处的最大碳浓度为0.04%。计算S值时,为一分钟。所以可得:代入有关数据后,可得:。计算结果:在保温期间,使钢表面层内含碳量达0.04%的最大深度是0.7mm。3)若使表层中碳的有害作用完全消除,则要求处的碳浓度要小于0.04%。随着扩散的进行,表层的碳浓度逐渐下降,只要表层碳浓度小于0.04%,则其它地方就没有问题了。仍然用高斯解,并且设,所以:因为S值已经知道,C=0.04%,所以时间

41、可求得:代入数据后,计算可得= 21875s = 6.08h 。计算结果:使碳在表层中的有害作用完全消除,至少要保温6小时。33、某一含质量分数0.2%C的Cr-Mo钢件在510下暴露于强脱碳条件下达一年之久。已知510下该钢(铁素体)中碳的扩散系数为1.010-9 cm2/s。钢件为两相混合物(+Fe3C),试计算其脱碳层厚度。简要解答 一年时间,=0.008%。可用Wagner方法解。应用式(2.69)得:由计算得: 计算结果:脱碳层厚度为0.5mm。若用脱碳公式:,则可得:,误差较大。若用前面式(2.31)近似计算则有: cm该结果和上面的计算相近。34、考虑铜合金固溶体的均匀化问题.1

42、)设某铜-锌合金的最高含锌(Zn)量与平均含Zn量之差为5%Zn,最高含Zn量区与最小含Zn量区之间的距离为0.1mm。请使用公式计算使上述含Zn量之差降低到1%Zn所需的时间。已知:均匀化温度为815,D0 = 2.110-5 m2 / s,Q=171103 J/mol 。2) 如果是铜-镍合金,情况同上,则需要多少时间 ?已知:在815时,镍(Ni)在Cu中的扩散系数为D = 710-11 cm2 / s 。为加快Cu-Ni合金的均匀化速度,缩短均匀化时间,可采用什么有效措施 ?简要解答 题意的铜合金固溶体均匀化问题符合正弦分布条件。画出初始浓度分布示意图,如题34图所示。题34图 铜合金

43、成分不均匀为正弦状的浓度分布(1) cm2/s由振幅: ,所以:解得:t1 =3.47h(2)解得:t2 =64.72h为缩短均匀化时间,可通过轧制等工艺,使浓度波长变小,并且也使缺陷自多,有利于原子的扩散,这样可使所需的时间大为减少。35、有一块含0.5%C的钢,已经在A1以下温度发生了脱碳。脱碳层厚度为1mm。而后将这块钢在保护气氛中加热到910进行很长时间的热处理。由于内部的扩散,脱碳层的碳含量又会增加。如果要求表面碳含量增加到0.1%C,问需要热处理多长的时间? 已知:在910时,碳的扩散常数D0 = 0.37 cm2 / s,碳的扩散激活能Q=148103 J/mol 。简要解答 9

44、10,样品处于奥氏体状态。根据题意,应该用两个误差解。设:近似设脱碳层中的碳含量为0,脱C层厚为h,如题35图。初始条件和边界条件为:t = 0, y-h , 0.5=A-B-C; t = 0, -hyh , 0.5=A+B+C A = 0.5 ,B = -0.25 ,C = 0.25 。经计算D=110-7 cm2 / s 。 (该式也可以直接引用)现在要求y=0处,当C=0.1%时,所需要的时间t = ? .代入数据: , 查表得: 题35图 浓度分布示意该题也可用正弦解方法来求解,但计算结果有较大差别。正弦解方法求解:改变原题意,如 “如果要求在距离表面0.8mm处,碳含量增加到0.45

45、%C,问需要热处理多长的时间? 最好是用正弦解,设置正弦解的浓度分布如图。这种正弦解表达式: 36、有一时效硬铝合金,在高温固溶处理后淬火,然后在150时效强化。在时效过程中,形成了许多很细小的析出物。通常发现:时效析出物的形成具有一定的速度,而且这速度常常快于合金元素的扩散系数(D0 = 0.2 m2 / s ,Q=125103 J/mol)所决定的速度。其原因是由于淬火使合金在低温下保存了过量的空位。在较低的温度,空位的平衡数量要下降,并且可用空位形成能E来描述,在铝中E75103 J/mol 。冷却到低温后,过剩的空位有消失的趋势。如可以通过在晶界上的沉淀来实现。这样,靠近晶界的空位将要

46、快速下降,而且在那里的扩散系数将很快接近它的正常值。所以,在晶界附近的合金元素的扩散将减慢,其结果是沿着晶界会造成无沉淀区(Precipitation Free Zone,简称PFZ)。试验表明,这种材料加热到150时效保温10分钟,才观察到有沉淀析出。试计算:在150时效时,在材料中这些无沉淀区的宽度。简要解答 实际是研究晶界处空位浓度的变化规律。由于淬火使合金在低温时保留了高温时所产生的空位,因此在低温时空位的平衡浓度有下降的趋势。容易通过在晶界上的沉淀来实现,这样靠近晶界处的空位将快速减少,在那里的扩散系数将很快地接近它的正常值。所以,靠近晶界处的合金元素的扩散沉淀析出过程将大为减慢。其

47、结果是沿着晶界会造成无沉淀区。由无沉淀区形成的机理可知,晶界上的空位浓度是很低的,可以认为是零。作为近似,可用误差函数来计算空位的浓度分布。如题36图所示,图中的虚线部分是假想的浓度分布,主要是为了能正确地使用扩散公式。计算时,估计到空位浓度为C0 / 2处为止。题36图 空位浓度的分布空位的扩散系数表达式为:式中,为时效温度,是空位的扩散温度;为固溶处理的温度,是产生高温空位浓度的温度;Q1为空位扩散迁移能Q1 = QE ;E是空位形成能。采用误差函数解,设晶界处的空位浓度为0,晶内的空位浓度为C0,高温时的空位浓度在冷却时完全保留了下来。 , , = 1.7610-12 cm2/s 3.1

48、210-5 cm = 0.312计算结果:晶界处无沉淀区宽度为0.624。37、曾经对一片快速形成的片状马氏体的温度进行估算,认为相变后的温度应比相变前的温度高出200。当然,它的冷却是快的。感兴趣的是应该测定一下是否有时间让马氏体发生一定的回火作用。计算片状马氏体的温度比周围高出100的情况,能维持多长时间假定片状马氏体的厚度为10微米()。为简化,奥氏体和马氏体均使用下列系数:导热率K = 0.8 J/cmsK ,密度=7.8g/cm3,比热CP=0.46J/gK 。简要解答 这是一个热传导问题,也可用扩散公式估算。应采用两个误差函数解。在这里,扩散公式中的扩散系数D应该是导热系数a .导

49、热系数a =K /(CP)=0,8/(0.467.8)=0.22 cm2 / s .扩散公式为: 当C = C0 / 2 ,y = 0时,求t = ? ,t = 0.510-5 s , 所以,所需要的时间是极短的。38、含有0.8%C和1.0%Mn的钢在700进行软化退火,其结果会形成球状的渗碳体颗粒。假定Mn有时间在渗碳体和铁素体相基体之间按分配系数进行分布,Mn在渗碳体/铁素体之间的分布系数K=15。而后钢加热到780,保温1分钟。1分钟对于得到均匀分布的碳活度来说是足够的,但是Mn没有怎么移动。铁素体基体很快地转变为奥氏体,而且一些碳会溶入奥氏体中。假使在780时,Mn在渗碳体和奥氏体中

50、的分布系数为3,那么,碳在奥氏体中的含量会是多少 ?简要解答 先求出700平衡态的和,再求得780时+K平衡时相中的碳活度 。可由求单相中活度公式求得 ,再换算成质量百分数。(1)计算和: , , ,(2)求780时的合金奥氏体碳活度 :有计算公式: 查有关图得780时Fe-C的=0.90, 取 。代入数据,得到: (3)用单相奥氏体组织的活度计算公式计算:因为在780时,经过1分钟后,应该是全部奥氏体化了,所以是单相奥氏体组织。碳扩散是很快的,根据题意,Mn可以认为基本上没有怎么扩散,所以可利用单相奥氏体组织的活度计算公式: 其中: (J / mol) (J / mol) = - 41000

51、 (J / mol) ,仍取 经计算得: , ,解得:因为: ,所以:因此,该钢在780保温1分钟后,奥氏体中的含碳量可达到0.75%。39、在白口铸铁中,碳的活度是很高的,因此有很高的石墨化驱动力。现有一白口铸铁,其主要成分为:3.96%C,2.0%Si,1.0%Mn。已知,在900时Si在渗碳体与奥氏体的分配系数为零,而Mn的分配系数为2。试计算:在900处理时,石墨化驱动力是否很高,以致反应可能快速进行,并且是由碳的扩散所控制。简要解答 分别计算Mn、Si效应,再求得总效应碳活度 。先计算合金在初始状态两相的数量及其成分。假定奥氏体中的含C量与二元系中的相同。由铁碳相图知,900时与渗碳

52、体相平衡的奥氏体的碳含量为1.23%(质量分数)。所以有:渗碳体的分子式为Fe3C,所以,。利用杠杆原理可计算奥氏体和渗碳体的摩尔分数:,因为Si不溶解于渗碳体中,所以。由质量平衡有: , 因为Mn和Fe的原子量几乎相同,所以近似计算可有:由Mn的质量平衡得到: , 将此数值代入方程可得Mn的影响:由于Si与Mn同时存在,共同作用,所以其总的变化为: , 计算结果表明:加入1%Mn降低了碳的活度,使石墨化驱动力有所降低。40、在1000时,Cr、Si在渗碳体和奥氏体的分配系数为分别为5.5及0。如果碳的含量为1.7%,计算钢中含有多少Cr才能抵偿1000时由于4%Si而提高的石墨化驱动力 ?

53、设1000时碳在奥氏体中最大饱和度为1.35%,Si、Cr、Fe的原子量分别取28、52、56 。简要解答 根据题意,希望Cr能消除Si的石墨化倾向,即令 (A) ()求 : ,代入(A)式有:, 需要加入2.4%(质量分数)Cr元素。41、在1000下,Cr往Fe中扩散。在Fe的表面上Cr浓度为50%,Fe-Cr系具有封闭的区。在1000下Cr在区的最大含量为12%,而在相中的扩散系数比在相中的大。请用图示法表明Cr浓度与其渗入深度的关系。简要解答 根据题意,画出浓度分布题41图示意如下。题41图 向铁中渗Cr时的浓度分布和Fe-Cr部分相图(示意)42、不同截面尺寸的Al-5%Cu合金试样在单相区淬火加热固溶处理,急剧快冷后时效。根据试验结果,给出了合金固溶体点阵常数和硬度变化的特征,如题42图所示。试分析:(1)时效刚开始时固溶体点阵常数较低,在时效一定时间后固溶体点阵常数增大;(2)在单相区的淬火加热温度相同,但不同截面试样淬火后固溶体点阵常数不同;(3)时效开始阶段硬度下降,随时效过程的进

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论