高考数学(文数)二轮专题培优练习18《几何概型》 (教师版)_第1页
高考数学(文数)二轮专题培优练习18《几何概型》 (教师版)_第2页
高考数学(文数)二轮专题培优练习18《几何概型》 (教师版)_第3页
高考数学(文数)二轮专题培优练习18《几何概型》 (教师版)_第4页
高考数学(文数)二轮专题培优练习18《几何概型》 (教师版)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、培优点十八 几何概型1.长度类几何概型例1:已知函数,在定义域内任取一点,使的概率是( )ABCD 【答案】C【解析】先解出时的取值范围:,从而在数轴上区间长度占区间长度的比例即为事件发生的概率,故选C2面积类几何概型(1)图形类几何概型例2-1:如图所示,在矩形中,图中阴影部分是以为直径的半圆,现在向矩形内随机撒4000粒豆子(豆子的大小忽略不计),根据你所学的概率统计知识,下列四个选项中最有可能落在阴影部分内的豆子数目是( )A1000B2000C3000D4000【答案】C【解析】在矩形中,面积为,半圆的面积为,故由几何概型可知,半圆所占比例为,随机撒4000粒豆子,落在阴影部分内的豆子

2、数目大约为3000,故选C(2)线性规划类几何概型例2-2:甲乙两艘轮船都要在某个泊位停靠6小时,假定他们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停泊位时必须等待的概率( )ABCD【答案】D【解析】设甲船到达的时间为,乙船到达的时间为,则所有基本事件构成的区域满足,这两艘船中至少有一艘在停泊位时必须等待包含的基本事件构成的区域满足,作出对应的平面区域如图所示:这两艘船中至少有一艘在停泊位时必须等待的概率为,故选D3体积类几何概型例3:一个多面体的直观图和三视图所示,是的中点,一只蝴蝶在几何体内自由飞翔,由它飞入几何体内的概率为( )ABCD【答案】D【解析】所求概率为棱锥的体

3、积与棱柱体积的比值由三视图可得,且,两两垂直,可得,棱锥体积,而,从而故选D对点增分集训一、单选题1如图,边长为2的正方形中有一阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为则阴影区域的面积约为( )ABCD无法计算【答案】C【解析】设阴影区域的面积为,故选C2某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于10分钟的概率为( )ABCD【答案】B【解析】由题意,此人在50分到整点之间的10分钟内到达,等待时间不多于10分钟,概率故选B3一只蚂蚁在边长为4的正三角形区域内随机爬行,则它在离三个顶点距离都大于2的区

4、域内的概率为( )ABCD 【答案】A【解析】满足条件的正三角形如图所示:其中正三角形的面积满足到正三角形的顶点,的距离都小于2的平面区域如图中阴影部分所示,则,则使取到的点到三个顶点,的距离都大于2的概率为:故选A4在区间上随机取两个数,记为事件的概率,则( )ABCD【答案】D【解析】如图所示,表示的平面区域为,平面区域内满足的部分为阴影部分的区域,其中,结合几何概型计算公式可得满足题意的概率值为,故选D5在区间上随机取一个数,的值介于0到之间的概率为( )ABCD【答案】A【解析】由,得,或,或,记的值介于0到之间,则构成事件的区域长度为;全部结果的区域长度为2;,故选A6点在边长为1的

5、正方形内运动,则动点到定点的距离的概率为( )ABCD【答案】C【解析】满足条件的正方形,如图所示:其中满足动点到定点的距离的平面区域如图中阴影部分所示,则正方形的面积,阴影部分的面积故动点到定点的距离的概率故选C7已知实数,执行如图所示的程序框图,则输出的不小于103的概率为 ( )ABCD【答案】B【解析】设实数,经过第一次循环得到,;经过第二次循环得到,;经过第三次循环得到,此时输出,输出的值为,令得,由几何概型概率得到输出的不小于103的概率为,故选B8九章算术中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边分别为5步和12步,问其内切圆的

6、直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( )ABCD【答案】C【解析】直角三角形的斜边长为,设内切圆的半径为,则,解得,内切圆的面积为,豆子落在其内切圆外部的概率是,故选C9把不超过实数的最大整数记为,则函数称作取整函数,又叫高斯函数,在上任取,则的概率为( )ABCD【答案】D【解析】当时,则,满足;当时,则,满足;当时,则不满足;当时,则,不满足综上,满足的,则的概率为,故选D10关于圆周率,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学每人随机写下一个,都小于1的正实

7、数对,再统计其中x,y能与1构成钝角三角形三边的数对的个数,最后根据统计个数估计的值如果统计结果是,那么可以估计的值为( )ABCD【答案】B【解析】 由题意,120对都小于1的正实数,满足,面积为1,两个数能与1构成钝角三角形的三边的数对,满足且,面积为,统计两数能与1构成钝角三角形三边的数对的个数为,则,故选B11为了节省材料,某市下水道井盖的形状如图1所示,其外围是由以正三角形的顶点为圆心,正三角形的边长为半径的三段圆弧组成的曲边三角形,这个曲边三角形称作“菜洛三角形”现有一颗质量均匀的弹珠落在如图2所示的莱洛三角形内,则弹珠恰好落在三角形内的概率为( )ABCD【答案】A【解析】弹珠落

8、在莱洛三角形内的每一个位置是等可能的,由几何概型的概率计算公式可知所求概率:,(为莱洛三角形的面积),故选A12下图来自古希腊数学家希波克拉底所研究的几何图形此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,的三边所围成的区域记为I,黑色部分记为II,其余部分记为III在整个图形中随机取一点,此点取自I,II,III的概率分别记为,则( )ABCD【答案】A【解析】设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,有,根据面积型几何概型的概率公式,可以得到,故选A二、填空题13在区间内任取一个实数,则使函数在上为减函数的概率是_【答案】【解析】函数在上为减函数

9、,因此所求概率为14记集合,集合表示的平面区域分别为,若在区域内任取一点,则点落在区域中的概率为_【答案】【解析】画出表示的区域,即图中以原点为圆心,半径为2的圆;集合表示的区域,即图中的阴影部分由题意可得,根据几何概型概率公式可得所求概率为15任取两个小于1的正数、,若、1能作为三角形的三条边长,则它们能构成钝角三角形三条边长的概率是_【答案】【解析】根据题意可得,三边可以构成三角形的条件为:这三个边正好是钝角三角形的三个边,应满足以下条件:,对应的区域如图,由圆面积的为,直线和区域围成的三角形面积是,则、1能作为三角形的三条边长,则它们能构成钝角三角形三条边长的概率故答案为16父亲节小明给爸爸从网上购买了一双运动鞋,就在父亲节的当天,快递公司给小明打电话话说鞋子已经到达快递公司了,马上可以送到小明家,到达时间为晚上6点到7点之间,小明的爸爸晚上5点下班之后需要坐公共汽车回家,到家的时间在晚上5点半到6点半之间求小明的爸爸到家之后就能收到鞋子的概率(快递员把鞋子送到小明家的时候,会把鞋子放在小明家门口的“丰巢”中)为_【答案】【解析】设爸爸到家时间为,快递员到达时间为,以横

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论