版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第七章 目标规划§1 目标规划的提出线性规划问题是讨论一个给定的线性目标函数在一组线性约束条件下的最大值或最小值问题。对于一个实际问题,管理科学者根据管理层决策目标的要求,首先确定一个目标函数以衡量不同决策的优劣,且根据实际问题中的资源、资金和环境等因素对决策的限制提出相应的约束条件以建立线性规划模型;然后用计算机软件求出最优方案并作灵敏度分析以供管理层决策之用。而在一些问题中,决策目标往往不只一个,且模型中有可能存在一些互相矛盾的约束条件的情况,用已有的线性规划的理论和方法无法解决这些问题。因此,1961年美国学者查恩斯(A.Charnes)和库柏(W.W.Coopor)提出了目标
2、规划的概念与数学模型,以解决经济管理中的多目标决策问题。我们将通过几个例子来说明在实际应用中线性规划存在一系列的局限性。例1 某厂生产A、B两种产品每件所需的劳动力分别为4个人工和6个人工,所需设备的单位台时均为1。已知该厂有10个单位机器台时提供制造这两种产品,并且至少能提供70个人工。又,A、B产品的利润,每件分别为300元和500元。试问:该厂各应生产多少件A、B产品,才能使其利润值最大?解 设该厂能生产A、B产品的数量分别为件,则有 图解法求解如下: 由上图可得,满足约束条件的可行解集为,即机时约束和人工约束之间产生矛盾,因而该问题无解。但在实际中,该厂要增加利润,不可能不生产A、B两
3、种产品,而由线性规划模型无法为其找到一个合适的方案。例2 某厂为进行生产需采购A、B两种原材料,单价分别为70元/公斤和50元/公斤。现要求购买资金不超过5000元,总购买量不少于80公斤,而A原材料不少于20公斤。问如何确定最好的采购方案(即花掉的资金最少,购买的总量最大)?解 这是一个含有两个目标的数学规划问题。设分别为购买两种原材料的公斤数,为花掉的资金,为购买的总量。建立该问题的数学模型形式如下: 对于这样的多目标问题,线性规划很难为其找到最优方案。极可能的结果是,第一个方案使第一目标的结果值优于第二方案,同时第二方案使第二目标的结果值优于第一方案。也就是说很难找到一个最优方案,使两个
4、目标的函数值同时达到最优。另外,对于多目标问题,还存在有多个目标存在有不同重要程度的因素,而这也是线性规划所无法解决的。在线性规划的基础上,建立了一种新的数学规划方法目标规划法,用于弥补线性规划的上述局限性。总的来说,目标规划和线性规划的不同之处可以从以下几点反映出来:1、线性规划只能处理一个目标,而现实问题往往存在多个目标。目标规划能统筹兼顾地处理多个目标的关系,求得切合实际需求的解。2、线性规划是求满足所有约束条件的最优解。而在实际问题中,可能存在相互矛盾的约束条件而导致无可行解,但此时生产还得继续进行。即使存在可行解,实际问题中也未必一定需要求出最优解。目标规划是要找一个满意解,即使在相
5、互矛盾的约束条件下也找到尽量满足约束的满意解,即满意方案。3、线性规划的约束条件是不分主次地等同对待,这也并不都符合实际情况。而目标规划可根据实际需要给予轻重缓急的考虑。§2 目标规划的基本概念与数学模型§2.1 基本概念在这一小节里介绍与目标规划有关的基本概念。1偏差变量对于例1,造成无解的关键在于约束条件太死板。设想把约束条件“放松”,比如占用的人力可以少于70人的话,机时约束和人工约束就可以不再发生矛盾。在此基础上,引入了正负偏差的概念,来表示决策值与目标值之间的差异。正偏差变量,表示决策值超出目标值的部分,目标规划里规定;负偏差变量,表示决策值未达到目标值的部分,目
6、标规划里规定。实际操作中,当目标值(也就是计划的利润值)确定时,所作的决策可能出现以下三种情况之一:(1)决策值超过了目标值(即完成或超额完成计划利润值),表示为,;(2)决策值未达到目标值(即未完成计划利润值),表示为,;(3)决策值恰好等于目标值(即恰好完成计划利润指标),表示为,。以上三种情况,无论哪种情况发生,均有 =0。2绝对约束与目标约束绝对约束也称系统约束,是指必须严格满足的等式约束和不等式约束,它对应于线性规划模型中的约束条件。目标约束是目标规划所特有的。当确定了目标值,进行决策时,允许与目标值存在正或负的偏差。因而目标约束中加入了正、负偏差变量。如,例1中假定该企业计划利润值
7、为5000元,那么对于目标函数,可变换为。该式表示决策值与目标值5000之间可能存在正或负的偏差(请读者分别按照上面所讲的三种情况来理解)。绝对约束也可根据问题的需要变换为目标约束。此时将约束右端项看作所追求的目标值。如,例1中绝对约束,可变换为目标约束。3目标规划的目标函数对于满足绝对约束与目标约束的所有解,从决策者的角度来看,判断其优劣的依据是决策值与目标值的偏差越小越好。因此目标规划的目标函数是与正、负偏差变量密切相关的函数,我们表示为。它有如下三种基本形式:(1)要求恰好达到目标值,即正、负偏差变量都尽可能地小。此时,构造目标函数为:(2)要求不超过目标值,即允许达不到目标值,正偏差变
8、量尽可能地小。此时构造目标函数为:(3)求超过目标值,即超过量不限,负偏差变量尽可能地小。此时构造目标函数为:4优先次序系数与权系数一个规划问题往往有多个目标。决策者在实现这些目标时,存在有主次与轻重缓急的不同。对于有级目标的问题,按照优先次序分别赋予不同大小的大系数:,。,为无穷大的正数,并且,(“”符号表示“远大于”),这样,只有当某一级目标实现以后(即目标值为0) ,才能忽略大的影响,否则目标偏离量会因为大的原因而无穷放大。并且由于,所以只有先考虑忽略影响(实现第级目标)后,才能考虑第级目标。实际上这里的大是对偏离目标值的惩罚系数,优先级别越高,惩罚系数越大。权系数用来区别具有相同优先级
9、别的若干目标。在同一优先级别中,可能包含有两个或多个目标,它们的正负偏差变量的重要程度有差别,此时可以给正负偏差变量赋予不同的权系数和。各级目标的优先次序及权系数的确定由决策者按具体情况给出。§2.2 目标规划的数学模型综上所述,目标规划模型由目标函数、目标约束、绝对约束以及变量非负约束等几部分构成。目标规划的一般数学模型为:目标函数 目标约束 绝对约束 非负约束 例3 在例1中,假定目标利润不少于15000元,为第一目标;占用的人力可以少于70人,为第二目标。求决策方案。解 按决策者的要求分别赋予两个目标大系数。列出模型如下: 例4 某纺织厂生产A、B两种布料,平均生产能力均为1千
10、米/小时,工厂正常生产能力是80小时/周。又A布料每千米获利2500元,B布料每千米获利1500元。已知A、B两种布料每周的市场需求量分别是70千米和45千米。现该厂确定一周内的目标为:第一优先级:避免生产开工不足;第二优先级:加班时间不超过10小时;第三优先级:根据市场需求达到最大销售量;第四优先级:尽可能减少加班时间。试求该问题的最优方案。解 设分别为生产甲、乙布料的小时数。对于第三优先级目标,根据A、B布料利润的比值,取二者达到最大销量的权系数分别为5和3。该问题的目标规划模型为: 综上所述,目标规划建立模型的步骤为:1、 根据问题所提出的各目标与条件,确定目标值,列出目标约束与绝对约束
11、;2、根据决策者的需要将某些或全部绝对约束转换为目标约束,方法是绝对约束的左式加上负偏差变量和减去正偏差变量; 3、给各级目标赋予相应的惩罚系数(),为无穷大的正数,且; 4、对同一优先级的各目标,再按其重要程度不同,赋予相应的权系数;5、根据决策者的要求,各目标按三种情况取值:恰好达到目标值,取允许超过目标值,取不允许超过目标值,取;然后构造一个由惩罚系数、权系数和偏差变量组成的、要求实现极小化的目标函数。§3 目标规划的求解3.1 图解法只有两个决策变量的目标规划数学模型,可以使用简单直观的图解法求解。其方法与线性规划图解法类似,先在平面直角坐标系第一象限内作出各约束等式或不等式
12、的图象,然后由绝对约束确定了可行域,由目标约束和目标函数确定最优解或满意解。对于绝对约束,与线性规划中的约束条件画法完全相同。对于目标约束方程,除作出直线外,还要在直线上要标出正负偏差变量的方向,其可行域方向取决于目标函数中对应目标。另外,目标规划是在前一级目标满足的情况下再来考虑下一级目标,很有可能尽可能满足目标的解不是可行解(即非可行解),而是权衡以后得出的最优解满意解。因而在目标规划里称求得的解为满意解。 注意在求解的时候,把绝对约束作最高级别考虑。例5 用图解法求解目标规划问题 解 在平面直角坐标系第一象限内作出各约束条件的图像,目标约束要在直线旁标上和di+。首先,绝对约束确定了可行
13、解范围在三角形OEF内;根据第一级目标,要求实现(恰好),因而可行解范围缩小到线段OC上;根据第二级目标,要求实现(不少于),在线段OC上,取的点A,此时可行解范围缩小到线段AC上;根据第三级目标,要求实现,在线段AC上,取的点B,此时解的范围缩小到线段AB上。所以,线段AB上的所有点为满意解。可求得A(15/8,15/8),B(24/7,24/7)。例6 用图解法求解例4的目标规划模型。解 在平面直角坐标系第一象限内作出各约束条件对应的图象,并在目标约束直线旁标上和。 根据第一级目标,目标函数要求实现,解的范围是线段AC的右上方区域;根据第二级目标,目标函数要求实现,解的范围缩小到四边形AB
14、DC内的区域;根据第三级目标,目标函数要求实现,先考虑,解的范围缩小为四边形ABFE内的区域,再考虑,四边形ABFE内的所有点,均无法满足,此时在可行域ABFE内考虑使达到最小的满意点F,F点不满足,但它是使第三级目标最满意的满意解;根据第四级目标,目标函数要求实现,由于解的范围已经缩小到点F,所以唯一的点F也是使第四级目标最满意的满意解。综上所述,该问题的满意解为点F,可求得F(70,20)。给出图解法求解步骤如下:1、在直角坐标系的第一象限作出绝对约束和目标约束的图象,绝对约束确定出可行解的区域,在目标约束直线上用箭头标出正负偏差变量值增大的方向(正、负偏差变量增大的方向相反);2、 在可
15、行解的区域内,求满足最高优先等级目标的解;3、转到下一个优先等级的目标,在满足上一优先等级目标的前提下,求出满足该等级目标的解; 4、重复3,直到所有优先等级目标都审查完毕; 5、确定最优解或满意解。3.2 单纯形法目标规划是线性规划的推广与发展,其数学模型结构与线性规划的数学模型结构没有本质的区别,求解线性规划的单纯形法,同样也是目标规划的求解方法。在目标规划里加入了大M惩罚系数,可用大M法来进行求解。这里不再举例。 用单纯形法求解目标规划,迭代结束有两种情况。一种所有检验数均已非负时,所获得的解使所有目标偏离量为0,此解为最优解。另一种情况是所有检验数均已非负时,并没有使所有目标达到最优值
16、,但达到最优的目标值一定是优先等级排在前面的,此时获得的解为满意解。如例4用单纯形法求的满意解为,目标值为,可以看到求得的解并没有使第三级和第四级目标达到最优,但已使第一、二级目标达到最优,这和前面用图解法求得的结果一致。3.3 EXCEL电子表格法 目标规划同样能由EXCEL求得其满意解。关键在于如何建立电子表格模型。例7 用EXCEL求解例4的目标规划模型。解 我们来看一下如何为例4中的目标规划问题建立电子表格模型,见图7-4。 图7-4单元格(B5:C8),实际上是决策变量在目标规划数学模型中的系数,又可理解为对各对应因素的单位贡献。如单元格B5是产品1对开工时间这一因素的单位贡献,即生
17、产1千米的A布料使开工时间增加1。D列计算了决策变量对每一因素的总贡献值。如单元格D5为总的开工时间,由公式SUMPRODUCT(B5:C5,B9:C9)计算而得。 (B9:C9)为可变单元格,(G5:H8)为附加的可变单元格。G、H、I、K列是该模型微妙所在。G列和H列分别表示了实际的正负偏差的值。I列按照数学模型中目标约束方程计算出的左端值。如单元格I5为第一个目标约束方程的左端值,由D5-G5+H5计算而得。单元格G10为目标单元格,它是各因素未达目标的总偏差(总罚数)。但是要注意的是,比如第一级目标,只有负偏差大于0时,才会产生罚数。同样的第二级目标只有正偏差大于0时才会产生罚数。依此
18、类推。在这里,决策者还要根据实际情况给出各级目标的罚系数,本题给出的假定罚系数见单元格G10的计算公式。注意,目标等级越高,罚系数越大。目标是使总罚数最小。在规划求解参数对话框里,给出目标单元格、可变单元格和约束。约束是使目标约束等式两端相等。 由于依然属于线性规划问题,仍需在选项对话框里选择“采用线性模型”和“假定非负”复选框。 可以看到图7-4的计算结果与前面两种方法相同。对于包含有绝对约束的目标规划模型,绝对约束的优先等级高于任何目标约束,因而要把它放入规划求解的约束条件里。例8 将例3中的目标利润改为4000,试用EXCEL求解最优方案。解 该问题包含有一个绝对约束:机时约束,把它定义
19、到规划求解对话框的约束里。模型与求解结果见图7-5。 图7-5模型中对两目标的罚系数分别设为10和1。求解结果,利润目标实现了,人工也少于70,目标偏离量为0。习题7.1 判断以下目标规划的目标函数是否正确。 (1) (2) (3) (4)7.2 用图解法求解下列目标规划问题:(1) (2)(3)(4)7.3 某厂组装两种产品,有关数据如表7-1。要求确定两种产品的日生产计划,并满足: (1)不得使装配线超负荷生产; (2)不得有剩余产品; (3)日产值尽可能达到5000元。 试找出满意解,并用图示说明之。表7-1产品单件组装工时日销量(件)产值(元/件)日装配能力A1.17040150B1.
20、360607.4 上题中,若将目标要求改为: (1)尽可能发挥工厂的装配能力; (2)尽可能满足市场的需求,并使产量与销量保持一致; (3)装配生产线可加班,但时数不得超过30小时; (4)尽可能使日产值最大。试定出两种产品满意的日产计划。 7.5 已知目标规划问题的约束条件如下: 求在下述各目标函数下的满意解:(1)(2)(3)(4)7.6 某公司要将一批货从三个产地运到四个销地,有关数据如表7-2。现要求订出调运计划,且依次满足:(1)B4要保证供应;(2)其余销地的供应量不低于80%;(3)A2给B2的供应量不低于150;(4)A2尽可能少给B1;(5)销地B1、B2的供应量尽可能保持平
21、衡。要求:(1)建立使总运费最小的目标规划模型?(2)建立该问题的电子表格模型,并用EXCEL规划求解进行求解。表7-2产地 销地B1B2B3B4供应量A17379560A226511400A36425750需求量3202404803807.7 某公司的管理层已经为其公司的两种新产品制定了各自的市场目标,具体地说,产品1必须占据15%的市场份额,而产品2必须有10%的市场份额。为了获得市场,准备开展三次广告活动,其中两个广告是分别针对产品1和产品2的,而广告3是为了提高整个公司及其产品的声誉。以分别表示分配在三个广告上的资金(以百万元为单位),相应的两种产品取得的市场份额估计值(以百分比表示)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年教育辅助机构劳动合同及教学质量协议3篇
- 二零二五年环保产品生产加工合作合同范本2篇
- 二零二五年度塑料加工工厂承包生产与环保责任合同3篇
- 潍坊护理职业学院《学习科学与技术》2023-2024学年第一学期期末试卷
- 天津艺术职业学院《灯光照明基础》2023-2024学年第一学期期末试卷
- 二零二五年度高科技设备租赁担保服务合同3篇
- 2024民间借贷合同(自动放弃利息)
- 二零二五年影视制作项目投资合同正本3篇
- 二零二五版影视制作借款合同示范文本2篇
- 2025年度餐饮股份合作开发项目合同3篇
- 山东省潍坊市2024-2025学年高三上学期期末 地理试题(无答案)
- 劳动法培训课件
- 2024年建筑施工安全工作计划(3篇)
- 2024届九省联考英语试题(含答案解析、MP3及录音稿)
- 仓库消防知识安全培训
- 从事专业与所学专业不一致专业技术人员申报职称岗位任职合格证明附件6
- 我国房屋建筑模板技术的研究综述
- 人教版小学三年级上册数学竖式笔算练习题
- 航天科工集团在线测评题
- 山东省潍坊新2025届高三语文第一学期期末经典试题含解析
- 医院三基考核试题(康复理疗科)
评论
0/150
提交评论