版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、24.2相似三角形的判定 (第1课时)一.复习回顾1.辨析辨析 (1)四个角分别相等的两个四边形一定相似吗?四个角分别相等的两个四边形一定相似吗? (2)四组对应边的比分别相等的两个四边形一定相似吗?四组对应边的比分别相等的两个四边形一定相似吗?2.什么样的两个多边形是相似多边形?什么样的两个多边形是相似多边形?3.什么是相似比(相似系数)?什么是相似比(相似系数)? 简答:简答:1.可举反例回答(可举反例回答(1)正方形和长方形或长宽之比不相等的)正方形和长方形或长宽之比不相等的两个矩形;(两个矩形;(2)正方形和不是正方形的菱形或两组内角均不)正方形和不是正方形的菱形或两组内角均不相等的菱
2、形相等的菱形. 2.两个边数相同的多边形,如果它们的对应角相等,对应边长两个边数相同的多边形,如果它们的对应角相等,对应边长度的比相等,那么这两个多边形叫做相似多边形度的比相等,那么这两个多边形叫做相似多边形. 3. 相似多边形对应边长度的比叫做相似比或相似系数相似多边形对应边长度的比叫做相似比或相似系数. 前面我们学习了相似多边形及相似比的有关概念,下面请同学们思考以下几个问题:二.引入新知 如图如图1,ABC与与ABC相似相似. 则则图图1中的两个三角形记作中的两个三角形记作“ABCABC”,读作,读作“ABC相相似于似于ABC”,“”叫相似符号叫相似符号.CABBCA图1 即写成即写成A
3、BCABC,表明对,表明对应关系是唯一确定的,即应关系是唯一确定的,即A与与A、B与与B、C与与C分别对应分别对应.如果仅说如果仅说“这两个三角形这两个三角形相似相似”,没有用没有用“”表示的,则没有说明表示的,则没有说明对应关系对应关系. 两个三角形相似,用相似符号表示时,两个三角形相似,用相似符号表示时,与全等一样,应把对应顶点的字母写在对与全等一样,应把对应顶点的字母写在对应的位置上,这样便于找出相似三角形的应的位置上,这样便于找出相似三角形的对应角和对应边对应角和对应边.24.2相似三角形的判定(第相似三角形的判定(第1课时)课时)对于ABCABC,根据相似形的定义,应有A=A,B=B
4、,C=C,.ABBCCAA BB CC A (三边对应成比例也可写成三边对应成比例也可写成AB:BC:CA=AB:BC:CA)练习练习1. 已知ABCDEF,请指出所有的对应边和对应角.并分别指出它们的关系.2.如果将上题中“ABCDEF”改为“ABC与DEF相似”你还能指出它们的对应关系吗?相似三角形的对应关系相似三角形的相似比1K将ABCABC的相似比记为k1ABBCCA=ABBCCA,即1K2KABCABC的相似比记为 ,A BB CC A=ABBCCA 即2K练习练习3.已知ABCDEF,AB=2,DE=3则ABC与DEF的相似比 和DEF与ABC的相似比 是否相等?如果不相等, 和
5、满足什么关系?如果AB=2,DE=2呢? 1K1K2K2K2k231k1k2k32121kk 简析简析: = , = , , . = =11k2k归纳 若将ABCABC的相似比记为 ,ABCABC的相似比记为 ,一般 = .当且仅当这两个三角形全等时,才有 = =1.1k1k2k1k21k1k2k因此,三角形全等是三角形相似的特例因此,三角形全等是三角形相似的特例.三.类比猜想1.两个三角形全等的判定有哪几种方法?两个三角形全等的判定有哪几种方法?2.是不是需要所有的对应边和对应角都相等?是不是需要所有的对应边和对应角都相等?3.猜想:两个三角形相似是不是也有简便的方法?猜想:两个三角形相似是
6、不是也有简便的方法?简析:简析:1.两个三角形全等的判定方法有:两个三角形全等的判定方法有:SAS、ASA、SSS、AAS,直角三角形还有直角三角形还有HL. 2.不需要所有的对应边和对应角都相等不需要所有的对应边和对应角都相等. 3.猜想:两个三角形相似也不需要所有的对应角和对应边猜想:两个三角形相似也不需要所有的对应角和对应边长度的比相等长度的比相等.四.探究论证 在在ABC中,中,D为为AB上上任意一点,如图任意一点,如图2所示所示.过点过点D作作BC的平行线交的平行线交AC于点于点E,那么那么ADE与与ABC相似吗?相似吗?ADBCEAEACEACEABCEADBCA图2已知已知:在在
7、ABC中,中,DE BC, DE分别交分别交AB,AC于于D,E.求证:求证: ADEABC. 1.根据相似多边形的定义根据相似多边形的定义ADE与与ABC相似必须满足哪些条件?相似必须满足哪些条件?分析ADAEDEABACBC 由已知和图2可知ADE与ABC相似必须有:A=A,ADE=B, AED=C, 2.已经具备哪些条件?为什么?还需要什么条件?已经具备哪些条件?为什么?还需要什么条件?已有条件:A=A,ADE=B, AED=C , ,还需要条件: ADAEABACADAEDEABACBCADBCEAEACEACEABCEADBCA图2分析 3.解决这个问题的关键在哪里?解决这个问题的关
8、键在哪里?怎么解决?怎么解决? 转化:将DE平移到BC上(可过点D作AC的平行线,交BC于F,则CF=DE)运用定理:平行于三角形平行于三角形一边的直线截其他两边(或两边延长一边的直线截其他两边(或两边延长线),所得对应线段成比例线),所得对应线段成比例.即可得到 ADAEDEABACBCADEBCF证明 过点D作AC的平行线,交BC 于F.,.ADAE FCADABAC BCABDEBC,DFAC,因为四边形DFCE是平行四边形,DE=FC,又A=A,ADE=B,AED=C,ADEABC.DEADBCAB.ADAEDEABACBCABCDEF五.定理归纳 由以上探究过程你能得出什么结论?如果
9、这条直线与三角形两边的延长线相交呢?如图3所示图3ABCDEBCDEAEDCAB定理 平行于三角形一边的直线与其他两边平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与(或两边的延长线)相交,截得的三角形与原三角形相似原三角形相似. 符号语言符号语言 在ABC中, 若 DEBC,(如图3所示) 则 ADEABC.六.巩固练习 如图4,在 ABCD中,DE交BC于F,交AB的延长线于点E.(1)请写出图中相似的三角形;(2)请由其中的一对相似三角形写出相应的比例式;(3)请说明AEBF与ADBE是否相等? F图4ABCDE简析(1)EBFEAD,CDFBEF , EADDCF
10、;也可写成 EBFEADDCF(3) 由(2)中比例式化成乘积式 可得AEBF=ADBE. (2)举一例:在EBFEAD中有 , 还有两种情形同学们自己解答还有两种情形同学们自己解答.E BE FB FE AE DA DF图4ABCDE七.目标总结本节课我们学习了哪些内容? 本节课首先讲述了相似三角形的有关概念,然后通过探究得出“三角形一边的平行线截三角形两边或其延长线所三角形一边的平行线截三角形两边或其延长线所得的三角形与原三角形相似得的三角形与原三角形相似”这一一判定定理.三角形一边的平行线的判定定理不仅可以直接用来证明有关的三角形相似的问题,而且是证明其他三个判定定理的主要依据,所以有时也把它叫做相似三角形判定定理的预备定理.熟练掌握这一定理对后面三个定理的证明至关重要. 学习了哪些思想方法? 类比和转
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六下语文古诗教学课件教学课件教学
- 三年级语文第26课课件教学课件教学
- 2024年酒泉客运从业资格证考试培训试题和答案
- 生理健康课件教学课件
- 2024年嘉峪关道路旅客运输驾驶员从业资格考试题库
- 2025届四川省成都市实验高级中学生物高二上期末教学质量检测模拟试题含解析
- 2024年福建客运资格专业能力考试考什么
- 2025届江西省临川一中南昌二中九江一中新余一中等九校重点中学协作体语文高三上期末调研试题含解析
- 2025届江西省抚州第一中学生物高三上期末学业水平测试模拟试题含解析
- 2025届湖南师大附中思沁中学高二上数学期末统考试题含解析
- LCM出货检验标准
- 江苏开放大学2023年秋《马克思主义基本原理 060111》形成性考核作业2-实践性环节(占过程性考核成绩的30%)参考答案
- 公司2023年消防安全资金投入计划和预算方案
- 石材厂设计方案范本
- GB/T 43153-2023居家养老上门服务基本规范
- 社会主义发展历程-PPT
- 民办职业培训机构地址变更申请表
- 冬季安全生产特点及预防措施
- 视频短片制作合同范本
- 抑郁症与睡眠障碍课件
- 供应链垫资采购合同范本
评论
0/150
提交评论