高考专题讲义:函数的图像_第1页
高考专题讲义:函数的图像_第2页
高考专题讲义:函数的图像_第3页
高考专题讲义:函数的图像_第4页
高考专题讲义:函数的图像_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2015年高考函数的图像专题讲义河南省三门峡市卢氏县第一高级中学 山永峰 图像是函数刻画变量之间的函数关系的一个重要途径,是研究函数性质的一种常用方法,是数形结合的基础和依据。在今后的高考中将会加大对函数图像的考查力度。主要以选择题、填空题的形式出现,属于中偏高档题。主要考查形式有:知图选式、知式选图、图像变换(平移、对称、翻折、伸缩变换),以及自觉的运用图像解题。因此要注意识图、读图能力的提高以及数形结合思想的灵活运用。笔者以近几年高考题为载体,结合自己的教学经验整理如下,不足之处敬请斧正!备考方向要明了考 什 么怎 么 考1.在实际情境中,会根据不同的需要选择图象法、列表法、解析法表示函数

2、2.会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式的解的问题3.会用数形结合思想、转化与化归思想解决函数问题.高考对本节内容的考查主要以选择题或填空题的形式考查函数图象的判断及应用1.对图象的判断主要有以下两种:(1)根据所给函数解析式,利用其与基本初等函数的关系以及它们之间的变化规律,根据图象变换得出所求函数的图象,如2012年四川T5,新课标全国T10等(2)根据函数的性质(如:奇偶性、单调性、周期性等)或函数图象的特殊点得出所求函数的图象,如2012年山东T9等2.图象的应用主要有以下几个方面:求函数的值域、单调区间,求参数的取值范围,判断非常规解的个数等,如2012年福建

3、T15,天津T14等.归纳·知识整合1利用描点法作函数图象其基本步骤是列表、描点、连线首先:确定函数的定义域;化简函数解析式;讨论函数的性质(奇偶性、单调性、周期性、对称性等)其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线2利用图象变换法作函数的图象(1)平移变换:yf(x)yf(xa);yf(x)yf(x)b.(2)伸缩变换:yf(x) yf(x);yf(x)yAf(x)(3)对称变换:yf(x)yf(x);yf(x)yf(x);yf(x)yf(x)(4)翻折变换:yf(x)yf(|x|);yf(x)y|f(x)|.探究1.函数yf(x)的图象

4、关于原点对称与函数yf(x)与yf(x)的图象关于原点对称一致吗?2一个函数的图象关于y轴对称与两个函数的图象关于y轴对称有何区别?提示:一个函数的图象关于y轴对称与两个函数的图象关于y轴对称不是一回事函数yf(x)的图象关于y轴对称是自身对称,说明该函数为偶函数;而函数yf(x)与函数yf(x)的图象关于y轴对称,是两个函数的图象对称3若函数yf(x)的图象关于点(a,0)(a>0)对称,那么其图象如何变换才能使它变为奇函数?其解析式变为什么?提示:向左平移a个单位即可;解析式变为yf(xa)自测·牛刀小试1(教材习题改编)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,

5、若把这一过程中汽车行驶的路程s看作时间t的函数,其图象可能是()2函数yx|x|的图象经描点确定后的形状大致是()3函数yln(1x)的图象大致为()4已知下图(1)中的图象对应的函数为yf(x),则下图(2)中的图象对应的函数在下列给出的四个式子中,可能是_(填序号)yf(|x|);y|f(x)|;yf(|x|);yf(|x|)5(2012·镇江模拟)函数f(x)是定义在4,4上的偶函数,其在0,4上的图象如图所示,那么不等式<0的解集为_考点一:作函数的图象 例1分别画出下列函数的图象:(1)y|lg(x1)|; (2)y2x11; (3)yx2|x|2.画函数图象的一般方

6、法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数或解析几何中熟悉的曲线时,可根据这些函数或曲线的特征直接作出(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.(3)描点法:当上面两种方法都失效时,则可采用描点法.为了通过描少量点,就能得到比较准确的图象,常常需要结合函数的单调性、奇偶性等性质讨论.强化训练:1分别画出下列函数的图象(1)y|x24x3|;(2)y;(3)y10|lg x|.考点二:识图与辨图例2(1)(201

7、2·山东高考)函数y的图象大致为()(2)已知定义在区间0,2上的函数yf(x)的图象如图所示,则yf(2x)的图象为()例3:2014年福建卷 若函数ylogax(a>0,且a1)的图像如图1­1所示,则下列函数图像正确的是()图1­1 A B C D 寻找图象与函数解析式之间的对应关系的方法(1)知图选式:从图象的左右、上下分布,观察函数的定义域、值域;从图象的变化趋势,观察函数的单调性;从图象的对称性方面,观察函数的奇偶性;从图象的循环往复,观察函数的周期性利用上述方法,排除错误选项,筛选正确的选项(2)知式选图:从函数的定义域,判断图象的左右位置;从

8、函数的值域,判断图象的上下位置;结合图像的特殊点(极值点、与坐标轴的交点等)。从函数的单调性,判断图象的变化趋势;从函数的奇偶性,判断图象的对称性从函数的周期性,判断图象的循环往复利用上述方法,排除错误选项,筛选正确选项注意联系基本函数图象和模型,当选项无法排除时,代特殊值,或从某些量上寻找突破口强化训练:2函数y2sin x的图象大致是()3(2013·杭州模拟)已知函数f(x)的图象如图所示,则f(x)的解析式可能是()Af(x)x22ln |x| Bf(x)x2ln |x|Cf(x)|x|2ln |x| Df(x)|x|ln |x| .2014年浙江卷 在同一直角坐标系中,函数

9、f(x)xa(x>0),g(x)logax的图像可能是() AB CD考点三:函数图象的应用 例4(2012·天津高考)已知函数y的图象与函数ykx2的图象恰有两个交点,则实数k的取值范围是_互动探究:若将“ykx2”改为“ykx”,k的取值范围是什么? 例5:2013·江西卷 如图13所示,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,ll1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点设弧FG的长为x(0<x<),yEBBCCD,若l从l1平行移动到l2,则函数yf(x)的图像大致是()图131.利有函数的图象研究函数的

10、性质从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.2.利用函数的图象研究方程根的个数有关方程解的个数问题常常转化为两个熟悉的函数的交点个数;利用此法也可由解的个数求参数值.强化训练: 5对实数a和b,定义运算“”:ab设函数(x22)(x1),xR.若函数yf(x)c的图象与x轴恰有两个公共点,则实数c的取值范围是()A(1,1(2,)B(2,1(1,2C(,2)(1,2 D2,16已知a>0,且a1,f(x)x2ax,当x(1,1)时,均有f(x)<,则实数a的取值范围是_1个易错点图象变换中的易错点

11、在解决函数图象的变换问题时,要遵循“只能对函数关系式中的x,y变换”的原则,写出每一次的变换所得图象对应的解析式,这样才能避免出错3个关键点正确作出函数图象的三个关键点为了正确地作出函数图象,必须做到以下三点:(1)正确求出函数的定义域;(2)熟练掌握几种基本函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如yx的函数;(3)掌握平移变换、伸缩变换、对称变换、翻折变换、周期变换等常用的方法技巧,来帮助我们简化作图过程3种方法识图的方法对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等方面来获取图中所提供的信息,解决这类问题的常用方法有:(1)定性分析法,也

12、就是通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征来分析解决问题;(2)定量计算法,也就是通过定量的计算来分析解决问题;(3)函数模型法,也就是由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题. 易误警示作图不准确或数与形不吻合致误典例6(2011·新课标全国卷)函数y的图象与函数y2sin x(2x4)的图象所有交点的横坐标之和等于()A2B4C6D81如果作出的函数图象比较粗糙,极易造成区间(1,2)上的两个交点遗漏,从而误选B.2如果作函数y的图象不够准确,只注意到图象过点,极易忽视区间上的交点,从而误选C.3如果不能正确地挖掘函

13、数y及y2sin x(2x4)的图象均关于点(1,0)对称,从而无法求出交点横坐标的和4解决此类问题,避免在解题过程中出现失误,应关注以下几点:(1)平时涉及函数图象的问题时,要规范准确地画出图象,切忌不用尺规草草完成(2)加强通过解析式分析其图象的对称性、周期性等性质的训练以提高解决这类问题的能力(3)训练由图分析其函数性质的解题技巧强化训练:1已知函数f(x)若方程f(x)a0有三个不同的实数根,则实数a的取值范围为()A(1,3) B(0,3) C(0,2) D(0,1) 2已知a,b,c依次是方程2xx0,log2x2x和logxx的实数根,则a,b,c的大小关系是_2015届高考函数

14、的图像专题检测题一、选择题(本大题共6小题,每小题5分,共30分)1函数y的图象大致是()2函数y的大致图象是()3(2013·太原模拟)已知函数f(x)是定义在R上的奇函数,当x0时,f(x)3xm(m为常数),则函数f(x)的大致图象为()4已知函数yf(x)与yg(x)的图象如图所示,则函数yf(x)·g(x)的图象可能是()5已知函数f(x)的图象向左平移1个单位长度后关于y轴对称,当x2>x1>1时,f(x2)f(x1)(x2x1)<0恒成立,设af,bf(2),cf(3),则a,b,c的大小关系为()Ac>a>bBc>b>

15、;aCa>c>b Db>a>c6设函数f(x)其中x表示不超过x的最大整数,如1.52,1.51,若直线yk(x1)(k>0)与函数yf(x)的图象有三个不同的交点,则k的取值范围是()A. B.C. D.7.2013·四川卷 函数y的图像大致是() 二、填空题8函数f(x)的图象如图所示,则abc_.9(2013·盐城模拟)若关于x的不等式2x2>|xa|至少有一个负数解,则实数a的取值范围是_10已知函数yf(x)(xR)满足f(x1)f(x1),且x1,1时,f(x)x2,则函数yf(x)与ylog5x的图象交点的个数为_三、解答题

16、(本大题共3小题,每小题12分,共36分)11已知函数f(x)x|mx|(xR),且f(4)0.(1)求实数m的值;(2)作出函数f(x)的图象;(3)根据图象指出f(x)的单调递减区间;(4)根据图象写出不等式f(x)>0的解集;(5)求当x1,5)时函数的值域12当x(1,2)时,不等式(x1)2<logax恒成立,求实数a的取值范围13(1)已知函数yf(x)的定义域为R,且当xR时,f(mx)f(mx)恒成立,求证yf(x)的图象关于直线xm对称;(2)若函数ylog2|ax1|的图象的对称轴是x2,求非零实数a的值教师复习备选题1为了得到函数y4·2x的图象,可

17、以把函数y2x的图象上所有的点()A向上平移2个单位长度 B向下平移2个单位长度C向左平移2个单位长度 D向右平移2个单位长度2已知a是实数,则函数f(x)1asin ax的图象不可能是()3作出下列函数的图象(1)y|x2|(x1);(2)y|x22|x|3|. 2015届高考函数的图像专题复习讲义答案前侧:.B 2.A 3.C 4. 5.:例1:变式1:例2::答案(1)D(2)B 例3:变式:2.C 3.B .3. 解析:选B由函数图象可得,函数f(x)为偶函数,且x>0时,函数f(x)的单调性为先减后增,最小值为正,极小值点小于1,分别对选项中各个函数求导,并求其导函数等于0的正

18、根,可分别得1,2,1,由此可得仅函数f(x)x2ln |x|符合条件例:答案(0,1)(1,4) 互动:解:函数可表示为y图象为如图所示的实线部分,数形结合可知,要使两函数图象有两个交点,则k(0,1)(1,2)变式5:6. 解析:由题知,当x(1,1)时,f(x)x2ax<,即x2<ax.在同一坐标系中分别作出二次函数yx2,指数函数yax的图象,如图,当x(1,1)时,要使指数函数的图象均在二次函数图象的上方,需a2且a1.故实数a的取值范围是a1或1a2.答案:(1,2 典例5:D解析 设l,l2距离为t,cos x2t21,得t.ABC的边长为,得BE(1t),则y2BE

19、BC2×(1t)2,当x(0,)时,非线性单调递增,排除A,B,求证x的情况可知选D.典例6:解析由题意知y的图象是双曲线,且关于点(1,0)成中心对称,又y2sin x的周期为T2,且也关于点(1,0)成中心对称;因此两图象的交点也一定关于点(1,0)成中心对称,再结合图象(如图所示)可知两图象在2,4上有8个交点,因此8个交点的横坐标之和x1x2x84×28答案D变式:1.2.答案:a<c<b检测题答案1-7:D C.解析:选D依题意作出函数f(x)与直线y(x1),y(x1)的部分图象,如下图所示从图象中我们可以看出当k时,函数f(x)与直线y(x1)的图象有三个交点,当k时,函数f(x)与直线y(x1)的图象有两个交点,所以当k<时,直线yk(x1)与函数yf(x)的图象恰有三个交点8.9.解析:在同一坐标系中画出函数f(x)2x2,g(x)|xa|的图象,如图所示若a0,则其临界情况为折线g(x)|xa|与抛物线f(x)2x2相切,由2x2xa可得x2xa20,由14·(a2)0,解得a;若a>0,则其临界情况为两函数图象的交点为(0,2),此时a2.结合图象可知,实数a的取值范围是.10.1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论