江苏省苏州市第二十六中学八年级数学上册《矩形、菱形、正方形(一)》教案 苏科版_第1页
江苏省苏州市第二十六中学八年级数学上册《矩形、菱形、正方形(一)》教案 苏科版_第2页
江苏省苏州市第二十六中学八年级数学上册《矩形、菱形、正方形(一)》教案 苏科版_第3页
江苏省苏州市第二十六中学八年级数学上册《矩形、菱形、正方形(一)》教案 苏科版_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 教学课题:§3.5.1矩形、菱形、正方形教学时间(日期、课时):教材分析:学情分析: 教学目标:1、认识几种特殊的四边形的性质的联系与区别2、会证明矩形的性质定理及直角三角形斜边上中线的有关性质定理3、能运用矩形的性质定理或有关定理进行简单的计算与证明4、在进行探索、猜想、证明的过程中,能将命题由文字语言转化为图形与符号语言,进一步发展推理论证的能力教学准备数学学与练集体备课意见和主要参考资料页边批注 教学过程一 新课导入矩形是特殊的平行四边形,它具有平行四边形的所有性质。结合下图说说矩形有哪些平行四边形不具有的特殊性质? 你能证明这些性质吗?二 新课讲授问题一 观察平行四边形和矩

2、形的对角线把它们所分成的三角形,你有何发现?(引导学生不断地学会从多个角度观察、认识图形,主动地发现和获得新的数学结论,不断地积累数学活动的经验)问题二 证明:矩形的4个角都是直角。 矩形的对角线相等。问题三 你能证明“直角三角形斜边上的中线等于斜边的一半”吗?说说你的证明思路。已知:如图,在ABC中,ACB=90°. 求证:边AB上的中线等于AB.证明:在ACB内作BCD=B,CD交AB于点D ACB=90°ACD与BCD互余,A与B互余 BCD=B ACD=A DA=DC=DB,即CD是边AB上的中线,且CD=AB问题四 你对上面的结论还有更多的思考和猜想吗?(引导学生

3、不断学会思考和猜想:由结论进一步能得到什么结论?这个结论的逆命题是否正确。不断发展学生数学思考的能力)例1 、已知:如图,矩形ABCD的两条对角线相交于点O,且AC=2AB.求证:AOB是等边三角形分析:利用矩形的性质:矩形的对角线相等且互相平分,结合“AC=2AB”即可证得。本题若将“AC=2AB”改为“BOC=120°”,你能获得有关这个矩形的哪些结论?练习:P16页 1、2例2、如图 在矩形ABCD中,BE平分ABC,交CD于点E,点F在边BC上, 如果FEAE,求证FE=AE。如果FE=AE 你能证明FEAE吗?三 巩固练习思考.如图所示,RtABC中,C=90°,

4、AC=12,BC=5,点M在边AB上,且AM=6 (1)动点D在边AC上运动,且与点A、C均不重合,设CD=x 设ABC与ADM的面积之比为y,求y与x之间的函数关系式(写出自变量x的取值范围); 当x取何值时,ADM是等腰三角形?写出你的理由 (2)如图,以图中的BC、CA为一组邻边的矩形ACBE中,动点D在矩形边上运动一周,能使ADM是以AMD为顶角的等腰三角形共有多少个?(直接写出结果,不要求说明理由)四 小结从位置、形状、大小等不同的角度,观察和比较平行四边形、矩形的对角线把它们分成的三角形的异同,发现并应用直角三角形的判定证明矩形的特殊性质;反过来,我们又利用矩形的性质证明“直角三角形中斜边上的中线等于斜边的一半”。板书设计作业设计已知,如图,矩形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OB的中点 (1)求证:ADEBCF;(2)若AD=4cm,AB=8cm,求OF的长如图,在矩形ABCD中,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论