集合的基本运算教学案例_第1页
集合的基本运算教学案例_第2页
集合的基本运算教学案例_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 集合的基本运算教学案例教学分析课本从学生熟悉的集合出发,结合实例,通过类比实数加法运算引入集合间的运算,同时,结合相关内容介绍子集和全集等概念.在安排这部分内容时,课本继续注重体现逻辑思考的方法,如类比等.值得注意的问题:在全集和补集的教学中,应注意利用图形的直观作用,帮助学生理解补集的概念,并能够用直观图进行求补集的运算.三维目标1.理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力.2.通过观察和类比,借助Venn图理解集合的基本运算.体会直观图示对理解抽象概念

2、的作用,培养数形结合的思想.重点难点教学重点:交集与并集,全集与补集的概念.教学难点:理解交集与并集的概念,以及符号之间的区别与联系.课时安排2课时教学过程第1课时导入新课思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢?教师直接点出课题.思路2.请同学们考察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A=1,3,5,B=2,4,6,C=1,2,3,4,5,6;(2)A=x|x是有理数,B=x|x是无理数,C=x|x是实数.引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习

3、的内容.思路3.(1)如图1131甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B有什么关系?图1-1-3-1观察集合A与B与集合C=1,2,3,4之间的关系.学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的运算.(2)已知集合A=1,2,3,B=2,3,4,写出由集合A,B中的所有元素组成的集合C.已知集合A=x|x>1,B=x|x<0,在数轴上表示出集合A与B,并写出由集合A与B中的所有元素组成的集合C.推进新课新知探究提出问题通过上述问题中集合A与B与集合C之间的关系,类比实数的加法运算,你发现了什么?用文字语言来叙述上述问题中,集合A与B与集合C之间

4、的关系.用数学符号来叙述上述问题中,集合A与B与集合C之间的关系.试用Venn图表示AB=C.请给出集合的并集定义.求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?请同学们考察下面的问题,集合A与B与集合C之间有什么关系?()A=2,4,6,8,10,B=3,5,8,12,C=8;()A=x|x是国兴中学2007年9月入学的高一年级女同学,B=x|x是国兴中学2007年9月入学的高一年级男同学,C=x|x是国兴中学2007年9月入学的高一年级同学.类比集合的并集,请给出集合的交集定义?并分别用三种不同的语言形式来表达.活动:先让学生思考或讨论问题,然后再回答,经教师提示、点拨,并对

5、回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来显示.讨论结果:集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集.记为AB=C,读作A并B.所有属于集合A或属于集合B的元素所组成了集合C.C=x|xA,或xB.如图1131所示.一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为AB=x|xA,或xB,用Venn图表示,如图1131所示.集合之间还可以求它们的公共元素组成

6、集合的运算,这种运算叫求集合的交集,记作AB,读作A交B.()AB=C,()AB=C.一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.其含义用符号表示为:AB=x|xA,且xB.用Venn图表示,如图1132所示.图1-1-3-2应用示例思路11.设A=4,5,6,8,B=3,5,7,8,求AB,AB.图1-1-3-3活动:让学生回顾集合的表示法和交集、并集的含义,由于本例题难度较小,让学生自己解决,重点是总结集合运算的方法.根据集合并集、交集的含义,借助于Venn图写出.观察这两个集合中的元素,或用Venn图来表示,如图1133所示.解:AB=4,5,6,83,5,7

7、,8=3,4,5,6,7,8.AB=4,5,6,83,5,7,8=5,8.点评:本题主要考查集合的并集和交集.用列举法表示的集合,运算时常利用Venn图或直接观察得到结果.本题易错解为AB=3,4,5,5,6,7,8,8.其原因是忽视了集合元素的互异性.解决集合问题要遵守集合元素的三条性质.变式训练1.集合M=1,2,3,N=-1,5,6,7,则MN=_.MN=_.答案:-1,1,2,3,5,6,7   2.集合P=1,2,3,m,M=m2,3,PM=1,2,3,m,则m=_.分析:由题意得m2=1或2或m,解得m=-1,1, , ,0.因m=1不合题意,故舍去.

8、答案:-1, , ,03.2007河南实验中学月考,理1满足AB=0,2的集合A与B的组数为        (    )A.2             B.5            C.7       

9、;       D.9分析:AB=0,2,A 0,2.则A= 或A=0或A=2或A=0,2.当A= 时,B=0,2;当A=0时,则集合B=2或0,2;当A=2时,则集合B=0或0,2;当A=0,2时,则集合B= 或0或2或0,2,则满足条件的集合A与B的组数为1+2+2+4=9.答案:D4.2006辽宁高考,理2设集合A=1,2,则满足AB=1,2,3的集合B的个数是   (    )A.1              B.3           C.4          

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论