工程力学公式微积分公式高等数学公式汇总_第1页
工程力学公式微积分公式高等数学公式汇总_第2页
工程力学公式微积分公式高等数学公式汇总_第3页
工程力学公式微积分公式高等数学公式汇总_第4页
工程力学公式微积分公式高等数学公式汇总_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、公式:1、轴向拉压杆件截面正应力,强度校核2、轴向拉压杆件变形3、伸长率:断面收缩率:4、胡克定律:,泊松比:,剪切胡克定律:5、扭转切应力表达式:,最大切应力:,强度校核:6、单位扭转角:,刚度校核:,长度为l的一段轴两截面之间的相对扭转角,扭转外力偶的计算公式:7、薄壁圆管的扭转切应力:8、平面应力状态下斜截面应力的一般公式:,9、平面应力状态三个主应力:, 最大切应力,最大正应力方位10、第三和第四强度理论:,11、平面弯曲杆件正应力:,截面上下对称时, 矩形的惯性矩表达式:圆形的惯性矩表达式:矩形的抗扭截面系数:,圆形的抗扭截面系数:13、平面弯曲杆件横截面上的最大切应力:14、平面弯

2、曲杆件的强度校核:(1)弯曲正应力,(2)弯曲切应力(3)第三类危险点:第三和第四强度理论15、平面弯曲杆件刚度校核:叠加法,16、(1)轴向载荷与横向载荷联合作用强度: (2)偏心拉伸(偏心压缩):(3)弯扭变形杆件的强度计算:有关高等数学计算过程中所涉及到的数学公式(集锦)一、 (系数不为0的情况)二、重要公式(1) (2) (3)(4) (5) (6)(7) (8) (9)(10) (11)三、下列常用等价无穷小关系()四、导数的四则运算法则五、基本导数公式 六、高阶导数的运算法则(1) (2)(3) (4)七、基本初等函数的n阶导数公式(1) (2) (3)(4)(5) (6) (7)

3、 八、微分公式与微分运算法则 九、微分运算法则十、基本积分公式 十一、下列常用凑微分公式积分型换元公式十二、补充下面几个积分公式十三、分部积分法公式形如,令,形如令,形如令,形如,令,形如,令,形如,令均可。十四、第二换元积分法中的三角换元公式(1) (2) (3) 【特殊角的三角函数值】 (1) (2) (3) (4) (5)(1) (2) (3) (4) (5)(1) (2) (3) (4)不存在 (5)(1)不存在 (2) (3)(4)(5)不存在十五、三角函数公式1.两角和公式2.二倍角公式3.半角公式4.和差化积公式5.积化和差公式6.万能公式7.平方关系8.倒数关系9.商数关系十六

4、、几种常见的微分方程1.可分离变量的微分方程: , 2.齐次微分方程:3.一阶线性非齐次微分方程: 解为:高等数学公式·平方关系: sin2()+cos2()=1 tan2()+1=sec2() cot2()+1=csc2() ·积的关系: sin=tan*cos cos=cot*sin tan=sin*sec cot=cos*csc sec=tan*csc csc=sec*cot ·倒数关系: tan·cot=1 sin·csc=1 cos·sec=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比

5、斜边 正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos(+)=cos·cos-sin·sin cos(-)=cos·cos+sin·sin sin(±)=sin·cos±cos·sin tan(+)=(tan+tan)/(1-tan·tan) tan(-)=(tan-tan)/(1+tan·tan) ·三角和的三角函数: sin(+)=sin·cos·cos+cos·sin·cos+cos

6、3;cos·sin-sin·sin·sin cos(+)=cos·cos·cos-cos·sin·sin-sin·cos·sin-sin·sin·cos tan(+)=(tan+tan+tan-tan·tan·tan)/(1-tan·tan-tan·tan-tan·tan) ·辅助角公式: Asin+Bcos=(A2+B2)(1/2)sin(+t),其中 sint=B/(A2+B2)(1/2) cost=A/(A2+B2)(1

7、/2) tant=B/A Asin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B ·倍角公式: sin(2)=2sin·cos=2/(tan+cot) cos(2)=cos2()-sin2()=2cos2()-1=1-2sin2() tan(2)=2tan/1-tan2() ·三倍角公式: sin(3)=3sin-4sin3() cos(3)=4cos3()-3cos ·半角公式: sin(/2)=±(1-cos)/2) cos(/2)=±(1+cos)/2) tan(/2)=±(1-cos)/(1+c

8、os)=sin/(1+cos)=(1-cos)/sin ·降幂公式 sin2()=(1-cos(2)/2=versin(2)/2 cos2()=(1+cos(2)/2=covers(2)/2 tan2()=(1-cos(2)/(1+cos(2) ·万能公式: sin=2tan(/2)/1+tan2(/2) cos=1-tan2(/2)/1+tan2(/2) tan=2tan(/2)/1-tan2(/2) ·积化和差公式: sin·cos=(1/2)sin(+)+sin(-) cos·sin=(1/2)sin(+)-sin(-) cos·

9、;cos=(1/2)cos(+)+cos(-) sin·sin=-(1/2)cos(+)-cos(-) ·和差化积公式: sin+sin=2sin(+)/2cos(-)/2 sin-sin=2cos(+)/2sin(-)/2 cos+cos=2cos(+)/2cos(-)/2 cos-cos=-2sin(+)/2sin(-)/2 ·推导公式 tan+cot=2/sin2 tan-cot=-2cot2 1+cos2=2cos2 1-cos2=2sin2 1+sin=(sin/2+cos/2)2 ·其他: sin+sin(+2/n)+sin(+2*2/n)+

10、sin(+2*3/n)+sin+2*(n-1)/n=0 cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+cos+2*(n-1)/n=0 以及 sin2()+sin2(-2/3)+sin2(+2/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算 编辑本段 公式一: 设为任意角,终边相同的角的同一三角函数的值相等: sin(2k)sin cos(2k)cos tan(2k)tan cot(2k)cot 公式二: 设为任意角,+的三角函数值与的三角函数值之间的关系: sin()sin cos()cos tan()t

11、an cot()cot 公式三: 任意角与 -的三角函数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式四: 利用公式二和公式三可以得到-与的三角函数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式五: 利用公式一和公式三可以得到2-与的三角函数值之间的关系: sin(2)sin cos(2)cos tan(2)tan cot(2)cot 公式六: /2±及3/2±与的三角函数值之间的关系: sin(/2)cos cos(/2)sin tan(/2)cot cot(/2)tan sin(

12、/2)cos cos(/2)sin tan(/2)cot cot(/2)tan sin(3/2)cos cos(3/2)sin tan(3/2)cot cot(3/2)tan sin(3/2)cos cos(3/2)sin tan(3/2)cot cot(3/2)tan (以上kZ) 部分高等内容 编辑本段 ·高等代数中三角函数的指数表示(由泰勒级数易得): sinx=e(ix)-e(-ix)/(2i) cosx=e(ix)+e(-ix)/2 tanx=e(ix)-e(-ix)/ie(ix)+ie(-ix) 泰勒展开有无穷级数,ez=exp(z)1z/1!z2/2!z3/3!z4/4

13、!zn/n! 此时三角函数定义域已推广至整个复数集。 ·三角函数作为微分方程的解: 对于微分方程组 y=-y''y=y'''',有通解Q,可证明 Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。 补充:由相应的指数表示我们可以定义一种类似的函数双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。 特殊三角函数值 a 0 30 45 60 90 sina 0 1/2 2/2 3/2 1 cosa 1 3/2 2/2 1/2 0 tana 0 3/3 1 3 None cota None 3 1 3/3 0导数公式:基本积

14、分表:三角函数的有理式积分:一些初等函数: 两个重要极限:三角函数公式:·诱导公式: 函数角Asincostgctg-sincos-tg-ctg90°-cossinctgtg90°+cos-sin-ctg-tg180°-sin-cos-tg-ctg180°+-sin-costgctg270°-cos-sinctgtg270°+-cossin-ctg-tg360°-sincos-tg-ctg360°+sincostgctg·和差角公式: ·和差化积公式:·倍角公式:·

15、半角公式:·正弦定理: ·余弦定理: ·反三角函数性质:高阶导数公式莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*)式的通解两个不相等实根两个相等实根一对共轭复根二阶常系数非齐次线性微分方程函数名称函数的记号函数的图形函数的性质指数函数 a):不论x为何值,y总为正数; b):当x=0时,y=1.对数函数 a):其图形总位于y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论