直方图均衡化及直方图规定化(共15页)_第1页
直方图均衡化及直方图规定化(共15页)_第2页
直方图均衡化及直方图规定化(共15页)_第3页
直方图均衡化及直方图规定化(共15页)_第4页
直方图均衡化及直方图规定化(共15页)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上数字图像处理实验报告(二)学 号:_ 姓 名:_ 专 业:_ 课序号:_ 计算机科学与技术学院专心-专注-专业实验2 直方图均衡化一、实验学时:4学时(本部分占实验成绩的40%)二、实验目的:1、理解直方图均衡化的原理及步骤;2、编程实现图像(灰度或彩色)的直方图均衡化。三、必须学习和掌握的知识点:直方图均衡化是一种快速有效且简便的图像空域增强方法,在图像处理中有着非常重要的意义,因此要求掌握。四、实验题目:编程实现灰度图像的直方图均衡化处理。要求给出原始图像的直方图、均衡化图像及其直方图和直方图均衡化时所用的灰度级变换曲线图。五、思考题:(选做,有加分)实现对灰度图

2、像的直方图规定化处理。六、实验报告:请按照要求完成下面报告内容并提交源程序、可执行程序文件和实验结果图像。1、 请详细描述本实验的原理:1.直方图均衡化概述 图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。直方图拉伸和是两种最常见的间接对比度增强方法。直方图拉伸是通过对比度拉伸对直方图进行调整,从而“扩大”前景和背景灰度的差别,以达到增强对比度的目的,这种方法可以利用线性或非线性的方法来实现;直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。 直方图均衡化的英文名称是Histogram Equalization. 直方图均衡化是领域中

3、利用图像直方图对对比度进行调整的方法。这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。通过这种方法,亮度可以更好地在直方图上分布。这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。2基本思想直方图均衡化处理的“中心思想”是把原始图像的灰度从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。直方图均衡化的基本思想是把原始图的直方图变换为均匀

4、分布的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。设原始图像在(x,y)处的灰度为f,而改变后的图像为g,则对图像增强的方法可表述为将在(x,y)处的灰度f映射为g。在灰度直方图均衡化处理中对图像的映射函数可定义为:g = EQ (f),这个映射函数EQ(f)必须满足两个条件(其中L为图像的灰度级数):(1)EQ(f)在0fL-1范围内是一个单值单增函数。这是为了保证增强处理没有打乱原始图像的灰度排列次序,原图各灰度级在变换后仍保持从黑到白(或从白到黑)的排列。(2)对于0fL-1有0gL-1,这个条件保证了变换前后灰度值动态范围的一致性。 (cumulative

5、 distribution function,CDF)即可以满足上述两个条件,并且通过该函数可以完成将原图像f的分布转换成g的均匀分布。此时的直方图均衡化映射函数为:gk = EQ(fk) = (ni/n) = pf(fi) , (k=0,1,2,L-1) 上述求和区间为0到k,根据该方程可以由源图像的各像素灰度值直接得到直方图均衡化后各像素的灰度值。在实际处理变换时,一般先对原始图像的灰度情况进行统计分析,并计算出原始直方图分布,然后根据计算出的累计直方图分布求出fk到gk的灰度映射关系。在重复上述步骤得到源图像所有灰度级到目标图像灰度级的映射关系后,按照这个映射关系对源图像各点像素进行灰度

6、转换,即可完成对源图的直方图均衡化。3.图像直方图变换的基本原理:设变量r代表图像中像素的灰度级,直方图变换就是假定一个变换式:                            (1-1)也就是,通过上述变换,每个原始图像的像素灰度级r都会产生一个s值。变换函数T(r)应满足以下条件:(1)  

7、0;    T(r)在区间中为单值且单调递增;(2)       当 时,即T(r)的取值范围与r相同。2. 直方图均衡化:对于离散值,我们处理其概率与求和,而不是概率密度函数与积分。一幅图像中灰度级rk出现的概率近似为                      (1-2)其中,n是图像中像素的总和

8、, 是灰度级 的像素个数,L为图像中可能的灰度级总数。                           (1-3)         上式中变换函数的离散形式为:    该变换(映射)称为直方图均衡化或直方图线性化。&

9、#160;优缺点这种方法对于背景和前景都太亮或者太暗的图像非常有用,这种方法尤其是可以带来X光图像中更好的骨骼结构显示以及或者曝光不足照片中更好的细节。这种方法的一个主要优势是它是一个相当直观的技术并且是可逆操作,如果已知均衡化函数,那么就可以恢复原始的直方图,并且计算量也不大。这种方法的一个缺点是它对处理的数据不加选择,它可能会增加背景杂讯的对比度并且降低有用信号的对比度;变换后图像的灰度级减少,某些细节消失;某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。2、请给出本实验的核心源码(Matlab或C语言):I=imread('C:UserswhDesktopphotoRo

10、ckies.bmp'); %读 imshow(I); figure,imhist(I); J,T=histeq(I,64); %图像灰度扩展到0255,但是只有64个灰度级 figure,imshow(J); figure,imhist(J); figure,plot(0:255)/255,T); %转移函数变换曲线 J=histeq(I,32); figure,imshow(J); %图像灰度扩展到0255,但只有32个灰度级 figure,imhist(J);3、实验结果分析(要求附上结果图像):原图像0100200300400500600700800900050100150200

11、250原图像直方图图像灰度扩展到0255,但是只有64个灰度级直方图显示050010001500050100150200250转移函数变换曲线00.10.20.30.40.50.60.70.80.9100.10.20.30.40.50.60.70.80.91图像灰度扩展到0255,但只有32个灰度级0200400600800100012001400160018002000050100150200250(下附显示各像素灰度级的mat文件)4、实验体会:1. 工欲善其事,必先利其器,matlab简单几行代码就解决了VC中可能上百上千行的程序。2. 正确调用内置子程序是非常便利的。5、思考题部分:1.直方图规定化程序代码:>> f=imread('C:UserswhDesktopphotoRockies.bmp');>> imshow(f);figure,imhist(f);ylim('auto');g=histeq(f,25

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论