版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第八章第八章 不定积分习题课不定积分习题课积分法积分法原原 函函 数数选选择择u u有有效效方方法法基基本本积积分分表表第一换元法第一换元法 第二换元法第二换元法直接直接积分法积分法分部分部积分法积分法不不 定定 积积 分分几种特殊类型几种特殊类型函数的积分函数的积分一、主要内容一、主要内容1 1、原函数、原函数 如果在区间如果在区间I内,可导函数内,可导函数)(xF的导函数为的导函数为)(xf, 即, 即Ix , 都 有, 都 有)()(xfxF 或或dxxfxdF)()( ,那么函数,那么函数)(xF就称为就称为)(xf或或dxxf)(在区间在区间I内原函数内原函数.定义定义原函数存在定理
2、原函数存在定理 如如果果函函数数)(xf在在区区间间I内内连连续续,那那么么在在区区间间I内内存存在在可可导导函函数数)(xF,使使Ix ,都都有有)()(xfxF .即:连续函数一定有原函数即:连续函数一定有原函数2 2、不定积分、不定积分(1) 定义定义 在区间在区间I内,函数内,函数)(xf的带有任意常数项的带有任意常数项的原函数称为的原函数称为)(xf在区间在区间I内的内的不定积分不定积分,记,记为为 dxxf)(CxFdxxf )()(函函数数)(xf的的原原函函数数的的图图形形称称为为)(xf的的积积分分曲曲线线. dxxgxf)()(10 dxxgdxxf)()(2) 微分运算与
3、求不定积分的运算是互逆的微分运算与求不定积分的运算是互逆的. dxxkf)(20 dxxfk)((k是是常常数数,)0 k(3) 不定积分的性质不定积分的性质 )()(xfdxxfdxd dxxfdxxfd)()( CxFdxxF)()( CxFxdF)()(3 3、基本积分表、基本积分表 kCkxkdx()1(是常数是常数)1(1)2(1 Cxdxx Cxxdxln)3( dxx211)4(Cx arctan dxx211)5(Cx arcsin xdxcos)6(Cx sin xdxsin)7(Cx cos xdxxtansec)10(Cx sec xdxxcotcsc)11(Cx csc
4、 dxex)12(Cex xdx2cos)8( xdx2secCx tan xdx2sin)9( xdx2cscCx cot dxax)13(Caax ln Cxxdxcoslntan)16( Cxxdxsinlncot)17( Cxxxdx)tanln(secsec)18( Cxxxdx)cotln(csccsc)19(Caxadxxa arctan11)20(22Cxaxaadxxa ln211)22(22Caxdxxa arcsin1)23(22Caxxdxax )ln(1)24(2222Caxaxadxax ln211)21(22Cx sh)14( xdxch xdxCx ch)15(
5、sh5 5、第一类换元法、第一类换元法4 4、直接积分法、直接积分法定定理理 1 设设)(uf具具有有原原函函数数,)(xu 可可导导,则则有有换换元元公公式式 dxxxf)()( )()(xuduuf 第一类换元公式凑微分法)第一类换元公式凑微分法)由定义直接利用基本积分表与积分的性质求不由定义直接利用基本积分表与积分的性质求不定积分的方法定积分的方法.;)(. 11dxxxfnn ;)(. 2dxxxf;)(ln. 3dxxxf;)1(. 42dxxxf;cos)(sin. 5xdxxf;)(. 6dxaafxx常见类型常见类型:;sec)(tan. 72xdxxf;1)(arctan.
6、82dxxxf 6 6、第二类换元法、第二类换元法定定理理 设设)(tx 是是单单调调的的、可可导导的的函函数数,并并且且0)( t ,又又设设)()(ttf 具具有有原原函函数数,则则有有换换元元公公式式 )()()()(xtdtttfdxxf 其中其中)(x 是是)(tx 的反函数的反函数.第二类换元公式第二类换元公式常用代换常用代换:.,)(. 1Rbatx .sin,)(. 222taxxaxf 令令如如三角函数代换三角函数代换.,)(. 322ashtxxaxf 令令如如双曲函数代换双曲函数代换.1. 4tx 令令倒置代换倒置代换7 7、分部积分法、分部积分法分部积分公式分部积分公式
7、dxvuuvdxvu duvuvudv 8.8.选择选择u u的有效方法的有效方法:LIATE:LIATE选择法选择法L-对数函数;对数函数;I-反三角函数;反三角函数;A-代数函数;代数函数;T-三角函数;三角函数;E-指数函数;指数函数; 哪个在前哪个选作哪个在前哪个选作u.9 9、几种特殊类型函数的积分、几种特殊类型函数的积分(1有理函数的积分有理函数的积分定义定义两个多项式的商表示的函数称之两个多项式的商表示的函数称之.mmmmnnnnbxbxbxbaxaxaxaxQxP 11101110)()(其其中中m、n都都是是非非负负整整数数;naaa,10及及mbbb,10都都是是实实数数,
8、并并且且00 a,00 b.真分式化为部分分式之和的待定系数法真分式化为部分分式之和的待定系数法四种类型分式的不定积分四种类型分式的不定积分;ln. 1CaxAaxAdx ;)(1()(. 21CaxnAaxAdxnn ;arctanln2. 342422222CqxqNqpxxMdxqpxxNMxpppMp dxqpxxNqpxxdxpxMdxqpxxNMxnMpnn)()()2(2)(. 42222此两积分都可积此两积分都可积,后者有递推公式后者有递推公式令令2tanxu 212sinuux 2211cosuux uxarctan2 duudx212 dxxxR)cos,(sinduuuu
9、uuR22221211,12 (2) 三角函数有理式的积分三角函数有理式的积分定义定义 由三角函数和常数经过有限次四则运算由三角函数和常数经过有限次四则运算构成的函数称之一般记为构成的函数称之一般记为)cos,(sinxxR(3) 简单无理函数的积分简单无理函数的积分讨论类型:讨论类型:),(nbaxxR ),(necxbaxxR 解决方法:解决方法:作代换去掉根号作代换去掉根号;necxbaxt 令令;nbaxt 令令二、典型例题二、典型例题例例1 1 dxxx1)23()23(2原式原式解解.4932 dxxxxx求求 1)23()23(23ln12xxd 123ln12tdt dttt)
10、1111(23ln21Ctt 11ln)2ln3(ln21.2323ln)2ln3(ln21Cxxxx tx )23(令令例例2 2解解.cos1)sin1( dxxxex求求 dxxxxex2cos2)2cos2sin21(2原式原式 dxxexexx)2tan2cos21(22tan)2(tan( xxdexxde )2tan(xedx.2tanCxex 例例3 3解解.15)1ln(22 dxxxx求求5)1ln(2 xx,112x 5)1ln(5)1ln(22 xxdxx原原式式.5)1ln(32232Cxx )1221(1122xxxx 例例4 4解解.1122 dxxxx求求,1t
11、x 令令dttttt)1(1)1(111222 原式原式dttt 211 22212)1(11ttddttCtt 21arcsin.1arcsin12Cxxx (倒代换倒代换)例例5 5解解.1632 xxxeeedx求求,6tex 令令,ln6tx ,6dttdx dttttt61123 原原式式dtttt )1)(1(622211)1)(1(6tDCttBtAttt 设设)1()()1()1)(1(622 ttDCttBtttA解得解得. 3, 3, 3, 6 DCBAdttttt)133136(2 原式原式Ctttt arctan3)1ln(23)1ln(3ln62.arctan3)1l
12、n(23)1ln(3636Ceeexxxx 例例6 6解解.)1ln(arctan2 dxxxx求求dxxx)1ln(2 )1()1ln(2122xdx .21)1ln()1(21222Cxxx 21)1ln()1(21arctan222xxxxd 原原式式xxxxarctan)1ln()1(21222 dxxxx1)1ln(21222 例例7 7解解.)2(10 xxdx求求 )2(10109xxdxx原式原式 )2()(101101010 xxxdCxx )2ln(ln2011010.)2ln(201ln2110Cxx .2)1ln(23)1ln()1(arctan212222Cxxxxx
13、xx 例例8 8解解.)1()1(342 xxdx求求.)1()11()1()1(234342 xxxxx,11 xxt令令,)1(22dxxdt 则则有有 原原式式 234)1()11(xxxdxdtt 3421Ct 3123.11233Cxx 例例9 9解解.cos1sin dxxxx求求dxxxxx 2cos22cos2sin22原式原式dxxdxxx 2tan2cos22dxxdxxxx 2tan2tan2tan.2tanCxx 例例1010解解 dxxfxfxfxfxf)()()()()(322原式原式.)()()()()(32 dxxfxfxfxfxf求求 dxxfxfxfxfxf
14、xf)()()()()()(22 )()()()(xfxfdxfxf.)()(212Cxfxf 例例1111解解., 1max dxx求求, 1max)(xxf 设设,1,11,11,)( xxxxxxf则则,),()(上连续上连续在在xf).(xF则必存在原函数则必存在原函数须处处连续,有须处处连续,有又又)(xF.1,2111,1,21)(32212 xCxxCxxCxxF)21(lim)(lim12121CxCxxx ,21112CC 即即)(lim)21(lim21321CxCxxx ,12123CC 即即.1,12111,211,21, 1max22 xCxxCxxCxdxx故故.1
15、,2132CCCC 可可得得,1CC 联联立立并并令令一、一、 选择题:选择题:1 1、 设设)(, )(21xFxF是区间是区间I内连续函数内连续函数)(xf的两个不的两个不 同的原函数,且同的原函数,且0)( xf, ,则在区间则在区间I内必有内必有( )(A A) CxFxF )()(21;(B B) CxFxF )()(21;(C C) )()(21xCFxF ;(D D) CxFxF )()(21. .2 2、若、若, )()(xfxF 则则 )(xdF= =( )(A A) )(xf; (B B) )(xF;(C C) Cxf )(; (D D) CxF )(. .测测 验验 题题
16、3 3、)(xf在某区间内具备了条件在某区间内具备了条件( )就可保证它的)就可保证它的 原函数一定存在原函数一定存在(A A) 有极限存在;有极限存在; (B B)连续;)连续;(B B) 有界;有界; (D D)有有限个间断点)有有限个间断点 4 4、下列结论正确的是、下列结论正确的是( )(A A) 初等函数必存在原函数;初等函数必存在原函数;(B B) 每个不定积分都可以表示为初等函数;每个不定积分都可以表示为初等函数;(C C) 初等函数的原函数必定是初等函数;初等函数的原函数必定是初等函数;(D D) CBA,都不对都不对 . .5 5、函函数数2)()(xxxf 的的一一个个原原
17、函函数数 )(xF( ( ) )(A A)334x; ; (B B)234xx; ;(C C) )(3222xxx ; ; (D D))(322xxx . .6 6 、 已已 知知 一一 个个 函函 数数 的的 导导 数数 为为xy2 ,21 yx时时且且, ,这这个个函函数数是是( ) (A A);2Cxy (B B);12 xy (C C)Cxy 22; ; (D D).1 xy7 7、下列积分能用初等函数表出的是、下列积分能用初等函数表出的是( ) (A A) dxex2; (B B) 31xdx; (C C) dxxln1; (D D) dxxxln. .8 8、 ,)()(CxFdx
18、xf且且,batx 则则 dttf)(( ) (A A)CxF )(; (B B) CtF )(; ; (C C)CbatFa )(1; ; (D D)CbatF )( . . 9 9、 dxxx2ln() (A A)Cxxx 1ln1; ; (B B)Cxxx 1ln1; ; (C C)Cxxx 1ln1; (D D)Cxxx 1ln1. . 10 10、 10)14( xdx( ) (A A)Cx 9)14(191; (B B)Cx 9)14(1361; (C C)Cx 9)14(1361; (D D)Cx 11)14(1361. .二、求下列不定积分:二、求下列不定积分: 1 1、 dxxx1cos12; ; 2 2、 522xxdx; ; 3 3、 dxxxx2215)1ln(; ; 4 4、 dxxx222)1(; ; 5 5、 211xdx; ; 6 6、 dxxxx1122; ; 7 7、 )1(2xxeedx; ; 8 8、 xdxx arccos2; ; 9 9、 234811xxdxx; ;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乙方解除合同范例
- 河道管理合同范例
- 活动承揽合同范例
- 客服兼职聘用合同范例
- 承包森林合同范例
- 上铺租赁合同范例
- 拆除砌墙吊顶合同范例
- 棉织购买合同范例
- 房租合同范例简版
- 挂靠责任合同范例
- 2024天猫男装行业秋冬趋势白皮书
- 运营内控副行长/经理资格认证考试题库(2021版)
- 办公技能竞赛试题
- 2024年绵阳科技城新区事业单位考核公开招聘高层次人才10人(高频重点复习提升训练)共500题附带答案详解
- 韶关市仁化县教育局招聘中小学临聘教师笔试真题2022
- 七年级英语上册(人教版2024)新教材解读课件
- 新大象版六年级上册科学全册知识点 (超全)
- 电力专业数据传输(EPDT)通信系统 空中接口呼叫控制层技术规范 标准编制说明
- 2024年东南亚集装箱班轮运输市场深度研究及预测报告
- 建筑项目安全风险分级管控清单建筑风险分级管控清单(范例)
- 马背上的民族蒙古族少数民族蒙古族介绍课件
评论
0/150
提交评论