版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 第一章 一、自变量趋于有限值时函数的极限一、自变量趋于有限值时函数的极限第三节, )(xfy 对0)1(xx 0)2(xx0)3(xxx)4(x)5(x)6(自变量变化过程的六种形式:二、自变量趋于无穷大时函数的极限二、自变量趋于无穷大时函数的极限本节内容本节内容 :机动 目录 上页 下页 前往 终了 函数的极限 一、自变量趋于有限值时函数的极限一、自变量趋于有限值时函数的极限1. 0 xx 时函数极限的定义时函数极限的定义引例引例. 测量正方形面积测量正方形面积.面积为A )边长为(真值:;0 x边长面积2x直接观测值间接观测值任给精度 ,要求 Ax2确定直接观测值精度 :0 xx0 xA
2、x机动 目录 上页 下页 前往 终了 定义定义1 . 设函数设函数)(xf在点0 x的某去心邻域内有定义 ,0,0当00 xx时, 有 Axf)(则称常数 A 为函数)(xf当0 xx 时的极限,Axfxx)(lim0或)()(0 xxAxf当即,0,0当),(0 xx时, 有假设记作 Axf)(Axfxx)(lim0几何解释几何解释:0 x0 xAAAx0 xy)(xfy 极限存在函数局部有界(P36定理2)这表明: 机动 目录 上页 下页 前往 终了 例例1. 证明证明)(lim0为常数CCCxx证证:Axf)(CC 0故,0对任意的,0当00 xx时 , 0CC因此CCxx0lim总有机
3、动 目录 上页 下页 前往 终了 例例2. 证明证明1)12(lim1xx证证:Axf)(1) 12(x12x欲使,0取,2则当10 x时 , 必有1) 12()(xAxf因此,)( Axf只需,21x1)12(lim1xx机动 目录 上页 下页 前往 终了 例例3. 证明证明211lim21xxx证证:Axf)(2112xx21 x故,0取,当10 x时 , 必有2112xx因此211lim21xxx1 x机动 目录 上页 下页 前往 终了 例例4. 证明证明: 当当00 x证证:Axf)(0 xx 001xxx欲使,0且. 0 x而0 x可用0 xx因此,)( Axf只需,00 xxx00
4、limxxxx.lim00 xxxx时00 xxxx故取,min00 xx则当00 xx时,00 xxx保证 .必有ox0 xx机动 目录 上页 下页 前往 终了 2. 保号性定理保号性定理定理定理1 . 假设假设,)(lim0Axfxx且 A 0 ,),(0时使当xx. 0)(xf)0)(xf证证: 知知,)(lim0Axfxx即,0, ),(0 x当时, 有.)(AxfA当 A 0 时, 取正数,A则在对应的邻域上. 0)(xf( 0)(A则存在( A 0 ),(0 x),(0 xx),(0 x(P37定理3)0 x0 xAAAx0 xy)(xfy )0(机动 目录 上页 下页 前往 终了
5、 AxfA)(:0A:0A若取,2A则在对应的邻域上 假设,0)(lim0Axfxx则存在使当时, 有.2)(Axf推论推论:23)(2AxfA2)(23AxfA),(0 x, ),(0 x),(0 xx(P37 推论)0 x0 xAAAx0 xy)(xfy 分析分析:机动 目录 上页 下页 前往 终了 定理定理 2 . 若在若在0 x的某去心邻域内0)(xf)0)(xf, 且 ,)(lim0Axfxx那么. 0A)0(A证证: 用反证法用反证法.则由定理 1,0 x的某去心邻域 , 使在该邻域内,0)(xf与已知所以假设不真, .0A(同样可证0)(xf的情形)思索: 若定理 2 中的条件改
6、为, 0)(xf是否必有?0A不能不能! 0lim20 xx存在如 假设 A 0 , 条件矛盾,故时,当0)(xf机动 目录 上页 下页 前往 终了 3. 左极限与右极限左极限与右极限左极限 :)(0 xfAxfxx)(lim0,0,0当),(00 xxx时, 有.)( Axf右极限 :)(0 xfAxfxx)(lim0,0,0当),(00 xxx时, 有.)( Axf定理定理 3 .Axfxx)(lim0Axfxfxxxx)(lim)(lim00( P38 题8 )机动 目录 上页 下页 前往 终了 例例5. 设函数设函数0,10,00, 1)(xxxxxxf讨论 0 x时)(xf的极限是否
7、存在 . xyo11 xy11 xy解解: 利用定理利用定理 3 .由于)(lim0 xfx) 1(lim0 xx1)(lim0 xfx) 1(lim0 xx1显然, )0()0( ff所以)(lim0 xfx不存在 .机动 目录 上页 下页 前往 终了 XXAAoxy)(xfy A二、自变量趋于无穷大时函数的极限二、自变量趋于无穷大时函数的极限定义定义2 . 设函数设函数xxf当)(大于某一正数时有定义,假设,0X,)(,AxfXx有时当则称常数时的极限,Axfx)(lim)()(xAxf当或几何解释几何解释:AxfA)(XxXx或记作直线 y = A 为曲线)(xfy 的水平渐近线,0 x
8、xf当)(机动 目录 上页 下页 前往 终了 A 为函数例例6. 证明证明. 01limxx证证:01xx1取,1X,时当Xx 01x因此01limxx注注:就有故,0欲使,01x即,1xoxyxy1机动 目录 上页 下页 前往 终了 .10的水平渐近线为xyyx1x11oyxxxgxxf11)(,1)(直线 y = A 仍是曲线 y = f (x) 的渐近线 .两种特殊情况两种特殊情况 :Axfx)(lim,0,0X当Xx 时, 有 Axf)(Axfx)(lim,0,0X当Xx时, 有 Axf)(几何意义几何意义 :例如,都有水平渐近线;0yxxxgxf21)(,21)(都有水平渐近线. 1y又如,oxyx21x21机动 目录 上页 下页 前往 终了 内容小结内容小结1. 函数极限的或X定义及应用2. 函数极限的性质:保号性定理与左右极限等价定理思考与练习思考与练习1. 若极限)(l
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年私厨套餐提供合同
- 2025年大通湖区法院公开招聘聘用制司法警务辅助人员备考题库及参考答案详解一套
- 2025年电大监督学题库及答案
- 2025年防城港市生态环境局招聘备考题库及一套参考答案详解
- 2025年湖北银行武汉财富管理人员社会招聘备考题库及完整答案详解1套
- 2025年绍兴市文化市场执法指导中心招聘编制外工作人员备考题库及参考答案详解1套
- 2025年河源市人民医院招聘合同制人员88人备考题库及参考答案详解一套
- 2025年医院医保部年终工作总结
- 2024年沈阳金融商贸经济技术开发区管理委员会运营公司招聘考试真题
- 2025年象州县机关事务管理局公开招聘编外工作人员备考题库及完整答案详解一套
- 产品质量检验标准化操作规程及模板
- 2025年江苏省《保安员资格证考试》考试题库含答案
- 阴阳五行与人体课件
- 发展心理学-终结性考核-国开(GS)-参考资料
- 2025年秋季学期国家开放大学《宪法学》形考任务1-4答案
- 员工喝酒合同协议书
- 2025陕西三秦环保科技股份有限公司经理层成员市场化选聘工作5人考试笔试参考题库附答案解析
- 2025年采购人员个人年终总结6篇
- 白蛋白肽的课件
- 2026民航华北空管局招聘44人考试笔试参考题库附答案解析
- 2025-2026学年人教版(新教材)小学数学三年级上册期末考试模拟试卷及答案(三套)
评论
0/150
提交评论