




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二、交错级数及其审敛法二、交错级数及其审敛法 三、绝对收敛与条件收敛三、绝对收敛与条件收敛 第三、四节第三、四节一、正项级数及其审敛法一、正项级数及其审敛法常数项级数的审敛法常数项级数的审敛法 机动 目录 上页 下页 返回 结束 一、正项级数及其审敛法一、正项级数及其审敛法若,0nu1nnu定理定理 1. 正项级数1nnu收敛部分和序列nS),2, 1(n有界 .若1nnu收敛 , ,收敛则nS,0nu部分和数列nSnS有界, 故nS1nnu从而又已知故有界.则称为正项级数 .单调递增, 收敛 , 也收敛.证证: “ ”“ ”机动 目录 上页 下页 返回 结束 定理定理2 (比较审敛法比较审敛
2、法)设,1nnu1nnv且存在,ZN对一切,Nn 有(1) 若强级数1nnv则弱级数1nnu(2) 若弱级数1nnu则强级数1nnv则有收敛 ,也收敛 ;发散 ,也发散 .nnvku 是两个正项级数, (常数 k 0 ),P=1时时, 为调和级数nnn13121111事实上事实上 , 假设调和级数收敛于 S , 则0)(lim2nnnSSnn2nnnn21312111但nnSS2矛盾! 所以假设不真 .21例例1. 讨论 p 级数pppn131211(常数 p 0)的敛散性. 发散. 解解: 1) 若, 1p因为对一切,Zn而调和级数11nn由比较审敛法可知 p 级数11npnn1发散 .发散
3、 ,pn1机动 目录 上页 下页 返回 结束 , 1p因为当nxn1,11ppxn故nnppxnn1d11nnpxx1d1111) 1(111ppnnp考虑强级数1121) 1(1ppnnn的部分和n111) 1(11ppnkkkn故强级数收敛 , 由比较审敛法知 p 级数收敛 .时,1) 1(11pn11111) 1(113121211pppppnn12) 若机动 目录 上页 下页 返回 结束 调和级数与 p 级数是两个常用的比较级数.若存在,ZN对一切,Nn ,1) 1(nun, ) 1(1)2(pnupn.1收敛则nnu;1发散则nnu机动 目录 上页 下页 返回 结束 证明级数1) 1
4、(1nnn发散 .证证: 因为2) 1(1) 1(1nnn),2, 1(11nn而级数111nn21kk发散根据比较审敛法可知, 所给级数发散 .例例2.2.机动 目录 上页 下页 返回 结束 判定级数1) 13(1nnn的敛散性 .例例3.判定级数13341nn的敛散性 .例例4.判定级数11nnn的敛散性 .例例5.定理定理3. (比较审敛法的极限形式),1nnu1nnv,limlvunnn则有两个级数同时收敛或发散 ;(2) 当 l = 0 ,1收敛时且nnv;1也收敛nnu(3) 当 l = ,1发散时且nnv.1也发散nnu设两正项级数满足(1) 当 0 l 0), 是否收敛 。解解
5、: : nnnnannu)(11nna)(na a=1时,级数也发散。所以:a1级数发散。 (为什么?)二二 、交错级数及其审敛法、交错级数及其审敛法 则各项符号正负相间的级数nnuuuu1321) 1(称为交错级数交错级数 .定理定理6 . ( Leibnitz 判别法 ) 若交错级数满足条件:则级数; ),2, 1() 11nuunn,0lim)2nnunnnu11) 1(收敛 , 且其和 ,1uS ,2, 1,0nun设收敛收敛nn1) 1(4131211) 11!1) 1(!41!31!211)21nn用Leibnitz 判别法判别法判别下列级数的敛散性:nnn10) 1(104103
6、102101)31432收敛上述级数各项取绝对值后所成的级数是否收敛 ?;1) 11nn;!1)21nn.10)31nnn发散收敛收敛 ! ) 1(1 n!1n11 nnnuu1 101 1nnnn10 nn1101 机动 目录 上页 下页 返回 结束 三、绝对收敛与条件收敛三、绝对收敛与条件收敛 定义定义: 对任意项级数,1nnu若若原级数收敛, 但取绝对值以后的级数发散, 则称原级111) 1(nnn,! ) 1(1) 1(11nnn1110) 1(nnnn1nnu收敛 ,1nnu数1nnu为条件收敛 .均为绝对收敛.例如例如 :绝对收敛 ;则称原级数条件收敛 .机动 目录 上页 下页 返
7、回 结束 例例7. 证明下列级数绝对收敛 :.) 1()2(;sin) 1 (1214nnnnennn证证: (1),1sin44nnn而141nn收敛 ,14sinnnn收敛因此14sinnnn绝对收敛 .定理定理7. 绝对收敛的级数一定收敛 .(2) 令,2nnenu nnnuu1lim limn12) 1(nennen2211limnnen11e因此12) 1(nnnen12) 1(nnnen收敛,绝对收敛.机动 目录 上页 下页 返回 结束 定理定理8 . 改进后的比值审敛法设 nu为任意项级数, 且,lim1luunnn则(1) 当1l(2) 当1l时, 级数收敛 ;时, 级数发散
8、;(3) 当时, 该方法不能判别。1l例例8. 判断下列级数是否绝对收敛 :.!)2(;!) 1() 1 (11nnnnnnxnn.)4(;)3(111nnnnnxnx内容小结内容小结1. 利用部分和数列的极限判别级数的敛散性2. 利用正项级数审敛法必要条件0limnnu不满足发 散满足比值审敛法 limn1nunu根值审敛法nnnulim1收 敛发 散1不定 比较审敛法用它法判别积分判别法部分和极限1机动 目录 上页 下页 返回 结束 3. 任意项级数审敛法为收敛级数1nnu设Leibniz判别法:01nnuu0limnnu则交错级数nnnu1) 1(收敛概念:,1收敛若nnu1nnu称绝对收敛,1发散若nnu条件收敛1nnu称机动 目录 上页 下页 返回 结束 思考与练习思考与练习设正项级数1nnu收敛, 能否推出12nnu收敛 ?提示提示:nnnuu2limnnu lim0由比较判敛法可知12nnu收敛 .注意注意: 反之不成立. 例如,121nn收敛 ,11nn发散 .机动 目录 上页 下页 返回 结束 备用题备用题;) 1ln(1) 1 (1n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甲乙合作开公司合同范本
- 空调保养维修协议合同书
- 烟酒货架转让协议书模板
- 村委临时用工劳务协议书
- 瑜伽老师安全协议书范本
- 电力照明工程承包协议书
- 自制造跑车出售合同范本
- 空调排风管清洗合同范本
- 离婚房屋公证合同协议书
- 渔网机租赁合同协议范本
- 医院用电接入方案
- 专题:阅读理解30篇 八年级英语下期期末高频易错考点专练(人教版)带参考答案详解
- 景区游客服务中心物业服务策略
- 杭州转贷基金管理办法
- 2024年期贵州省毕节市数学七上期末检测试题含解析
- 2025年医疗健康集团公立医院管理人员招聘考试笔试试题含答案
- 老北京胡同文化课件
- 德瑞斯D600变频器说明书
- 中学教师教育类读书分享
- 广东省佛山市2024-2025学年高二下学期期末教学质量检测政治试卷(含答案)
- 儿科护士考试试题及答案
评论
0/150
提交评论