机械工程专业的《试验设计与数据处理》课程_第1页
机械工程专业的《试验设计与数据处理》课程_第2页
机械工程专业的《试验设计与数据处理》课程_第3页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、试验设计与数据处理专业:机械工程班级:机械 11 级专硕 学号: S110805035姓名:赵龙第三章:统计推断3- 13解:取假设HO: u1-u2w 0和假设H1: u1-u2 > 0用sas分析结果如下:Sample StatisticsGroupNMeanStd. Dev.Std. Errorx80.2318750.01460.0051y100.20970.00970.0031Hypothesis TestNull hypothesis:Mean 1 - Mean 2= 0Alternative:Mean 1 - Mean 2A= 0If Varianees Aret stati

2、stie DfPr > tEqual3.878160.0013Not Equal3.70411.670.0032由此可见 p 值远小于 0.05,可认为拒绝原假设, 即认为 2 个作家所写的小品文中 由 3 个字母组成的词的比例均值差异显著。3-14解:用sas分析如下:Hypothesis TestNull hypothesis:Variance 1 / Variance 2 = 1Alter native:Varia nee 1 / Varia nee 2 A= 1- Degrees of Freedom -FNumer. Denom.Pr > F2.27 7 9 0.2501

3、由 p 值为 0.2501>0.05(显著性水平),所以接受原假设, 两方差无显著差异第四章:方差分析和协方差分析4- 1 解:Sas分析结果如下:Dependent Variable: ySoureeDFSum ofSquares Mean Square F ValuePr > FSourceDFType I SSMean SquareF ValuePr > Fm244.3333333322.166666674.090.0442n311.500000003.833333330.710.5657m*n627.000000004.500000000.830.5684Source

4、DFType III SSMean SquareF ValuePr > Fm244.3333333322.166666674.090.0442n311.500000003.833333330.710.5657m*n627.000000004.500000000.830.5684Model1480.823000 370.20575040.88 <.0001Error15 135.822500 9.054833Corrected Total19 1616.645500Source cR-Square Coeff Var Root MSE y Mean0.915985 13.12023

5、3.009125 22.93500DF Anova SSMean SquareF ValuePr > F41480.823000370.20575040.88<.0001由结果可知,p 值小于 0.001,故可认为在水平 a=0.05 下,这些百分比的均值有显著差异。4-2 解:The GLM ProcedureDependent Variable: RSum ofSourceDFSquaresMean SquareF ValuePr > FModel1182.83333337.53030301.390.2895Error1265.00000005.4166667Correc

6、ted Total23147.8333333R-Square Coeff VarRoot MSER Mean0.56031622.34278 2.32737310.41667由结果可知, 在不同浓度下得率有显著差异, 在不同温度下得率差异不明显, 交 互作用的效应不显著。4-4 解: (1) 不用协变量做方差分析The GLM ProcedureDepsidait ariable: ySum ofSourceDFSquaresM«aa SquareF ValuePr>FModd3】Q4l 二91箕:347J638S?1.380"<5Eitot205018 166

7、66725O.9OB333C crrrected Total236059.953333R'SquareRoot MSEy皿逊'0117191422.8875415.3JOO?59.20S33S DirreeDFType I SSMsan. SquareF ValuePrFy1330.04166671.320.2650驭1693.37500001.160 112011S.3 7500000.070?S95SourceDFType IH 阴hleaKi SquareF ValuePrFy1330.041667裁9剧弱仇1.32D.26j0驭1693.j7jM>00絵左WQ2.

8、760.112011.S.j?500000 070.7 &9J由分析结果可知,花的品种、温度和两者的交互作用对鲜花产量的影响都是 不显著的。引入协变量作方差分析The GLM ProcedureD epeadent Vari able: yS&urceModdEircfCorrected TotalSuin ofF Value12: 92Pr>F0001DF斗1923SquaiH5832.19036127.1391476059,958333Mean Square145S.l_9n_2I1.9J996OR-Square以喊册RwtNfSEyhkaa0.96250243.45

9、S31869.20833SourceDFType】 SSilean SquareFPr = Fy1350.W16672.605XH1693.37500037 J7<000111S.3"5DOO1 540.23031*19092719400.5S<0001SciirceDFTypelUSSMean SquareF ValuPrFy123.94J2S12.000.1733毋:4798886540.07uDOT:3175.07199S6.1S0.0215由分析结果可见,引入协变量后,v、m、和x对鲜花产量的影响都是显著地第五章:正交试验设计5- 3解:用L9 (34)确定配比试

10、验方案: 试验方案因素试验号ABCD11( 0.1 份)1( 0.3 份)1( 0.2 份)1( 0.5 份)212( 0.4 份)2( 0.1 份)2( 0.3 份)313( 0.5 份)3( 0.1 份)3( 0.1 份)42( 0.3 份)123522316231273( 0.2 份)1328321393321以1号条件为例,表中四个数值的组成比为:A: B: C: D=0.1: 0.3: 0.2: 0.5配比方案中,要求各行四个比值之和为1A =0.10.0910.1 +0.3 十0.2 +0.51。在1号条件中,四种数值分别是1B=0.30.2720.1+0.3 + 0.2 + 0.

11、5= 0.210.10.30.20.5= 0.182=0.510.10.3 0.2 0.5=0.455其余实验条件可按照相同方法得出第六章:回归分析6- 6 解:(1)作线性回归分析结果如下:D epraident 7ari able: yAnalysis of VarianceSum cfSourceDFS quarssModelJ(5.64500Error二1.3300Corrected Total717 02000SquareF ValuePrF5.21500J5170.0110.54375RwtMSE0.58630R-SquareQ91929.90000jR-Sq0.3586Pirmi

12、rtef EjhmattsParameterStandardVarimblmDFEsttmaiErrort ValuePr=- ft|lXLltlCtpt1A900000 2077047.76(X)010.5750002.7?O.OfOl10.550002.650 056S11.15MG007255.55由分析结果得回归方程为:y =9.90000 0.57500xj 0.55000X2 1.15000x3由p值都小于0.1可知,每项都是显著的,方程也是显著的(2)Stepwiae Sei ecu del: Step 3VariableEntered:R-Square = O 9192d Gt

13、pO = 4 0000Analysis of VartanceSum ofMean*-SourceDFSqxLOfesSqiureF ValuePr 才 F315.M5OO5-2150015.170.0119Ertcr41 375000 34375Csrgwd Toxal717 02000ParamecerStaxidvdVnSableErrorTypeWSSF ValuePr =>FIntercept9.900000.20729784080002280.96=00010-575000.207292-645007.690.05010550000.207292-420007.040.05

14、6S序31150000.2072910-5800030730.0052Hoimds on conditBDn number: 1.9All v arsab les left in tiie model are signcficziit a.t tiie 0-1500 leel.All variables have been entered into tiie model-SiirnTi:iar'呂亡即低-乜栏 SelectionVariabledumberPartialModelStepEnteredFLemov ed£5驭.加R- SquireC£p>F V

15、sdueP171x310 15216枣.14.73459.860.0201220l 133-10.77709.04003.4S0.12Q9330.14Z2O 91924 OOOO7 04O.O5&S由分析结果可知,在a=0.05下,仅有x3和x1应当引入方程。故所求方程为:y =9.90000 0.57500X11.15000X36-9解:分析结果如下:Dependent Variable: yStepwise Selection: Step 1Variable t9 Entered: R-Square = 0.3473 and C(p) = 175.7517Analysis of V

16、arianceSum ofMeanSourceDFSquaresSquareF ValuePr > FModel176.2438976.243897.450.0163Error14143.2837110.23455Corrected Total15219.52760ParameterStandardVariableEstimateError Type II SS F ValuePr > FIntercept8.229801.38618360.7494935.25<.0001t90.010560.0038776.243897.450.0163Bounds on conditio

17、n number: 1, 1Stepwise Selection: Step 2Variable t13 Entered: R-Square = 0.6717 and C(p) = 84.4265Analysis of VarianceSum ofMeanSourceDFSquaresSquareF ValuePr > FModel2147.4655173.7327613.300.0007Error1372.062095.54324Corrected Total15219.52760ParameterStandardVariableEstimateError Type II SS F V

18、aluePr > FIntercept18.334832.99803207.32264 37.40<.0001t90.011730.0028792.81733 16.74 0.0013t13-1.899380.5298971.22162 12.85 0.0033Stepwise Selection: Step 3Variable t5 Entered: R-Square = 0.7627 and C(p) = 60.2727Analysis of VarianceSum ofMeanSourceDFSquaresSquare F ValuePr > FModel3167.42

19、49255.8083112.850.0005Error1252.102684.34189Corrected Total15219.52760ParameterStandardVariableEstimateError Type II SS F Value Pr > FIntercept19.499412.70837225.06452 51.84<.0001t50.001630.0007617619.95941 4.600.0532t90.007280.0032821.44626 4.940.0462t13-2.193050.4885687.48515 20.150.0007Boun

20、ds on condition number: 1.8185, 13.825All variables left in the model are significant at the 0.1500 level.No other variable met the 0.1500 significance level for entry into the model.Summary of Stepwise SelectionVariable VariableNumber PartialModelStepEnteredRemovedVars In R-Square R-Square C(p) F V

21、aluePr > F1t910.34730.3473175.7527.450.01632t1320.32440.671784.426512.850.00333t530.09090.762760.27274.600.0532由结果可知,y=19.49941+0.00163xiX2+0.00728x2X4 -2.19305x36-10解:(1)散点图如下:2015 ¥11 24681012-X1可以采用Logistic拟合此数据。(2) 用Logistic模拟结果为:Dependent Variable y Method: Gauss-NewtonSum ofIterbcaSqua

22、res03.71802.000021.00001124.113.64081.849314.8393570.923.54751.668414.9977534.733.47041.520815.2362499.443.40461.396315.4814464.353.34691.288715.7348429.263.29551.194315.9985394.173.24911.110716.2735359.183.20691.036016.5601324.493.16840.969116.8579290.5103.13310.909117.1660257.6113.10080.855117.482

23、9226.3123.07120.806717.8067196.8133.04420.763218.1349169.7143.01950.724218.4653145.1152.99710.689218.7951123.1162.97680.658019.1220104.0172.95840.630019.443887.4241182.94200.605019.758673.4129192.92720.582720.064861.7148202.91400.562820.361052.0895212.90230.545020.646444.2826222.89200.529120.920338.

24、0422232.88280.514921.182233.1304242.87480.502121.431929.3307252.86790.490721.669326.4509262.86180.480421.894624.3243272.85660.471122.107822.8087282.85220.462822.309421.7843292.84840.455322.499521.1514302.84530.448622.678720.8276312.84280.442522.847220.7456WARNING: Step size shows no improvement.WARN

25、ING: PROC NLIN failed to converge.Estimation Summary (Not Converged)MethodGauss-NewtonIterations31Subiterations29Average Subiterations0.935484R0.653053PPC(c)0.012486The NLIN ProcedureEstimation Summary (Not Converged)RPCObject0.00394Objective20.74557Observations Read15Observations Used15Observations

26、 Missing0NOTE: An intercept was not specified for this model.Sum ofMeanApproxSourceDFSquaresSquareF ValuePr > FRegression33245.51081.8625.77 <.0001Residual1220.74561.7288Uncorrected Total153266.3Corrected Total14949.9ApproxParameterEstimateStd ErrorApproximate 95% Confidence Limitsb2.84280.004

27、882.83212.8534c0.44250.003210.43550.4494a22.84720.574921.594724.0998Approximate Correlation Matrixbcab1.00000000.7483922-0.2191675c0.74839221.0000000-0.4085662a-0.2191675-0.40856621.0000000故得'VS : 1 I: 、.;:; -.'I. I : 1 第七章:回归正交设计7- 1 解:n=9z 39z 38 5作变换 X12z - 77,贝U x1=1, x2=2, x3=3,,x9=9。0.

28、50.5并可设 y=bO+b1 1(x)+ b22(x)+ b22(x)+ b44(x)对于n=9,查附表6,利用SAS软件进行回归多项式分析,结果如下:根据结果分析b0,b1,b2的P值小于0.05,是显著的,The SAS System 21:18 Vednesdeiy November 14, 20102The ORTHOREG ProcedureDependent Variable: ySourceDFSum ofSquaresMean SquareF ValuePr > FModel41.54309602720.385773756B45.670.0014Error40.0338

29、6052840.0084G51321Corrected Total01.5769555556Rgt USE 0,0920061525R-Square 0,9785279121VariableDFParameter Est imateStandard Errort ValuePr > ItlIntercept12*072222222222220.030666717567.57<.0001wl10 J1950.011877943210.080.0005i210.00174751240.740.0003础1-0.006292929292920,0028241476-2.150.0878w

30、410.00206628220.090,9363b3, b4的P值大于0.05是不显著的,所以只需要配要二次项就行了 当n=9时,有:1(x) = ;(x) =x -57582(x)二 2 2(x) =3 (x2 -10x) =3x2 -30x 3796y = b。6 1(x) b2 2(x)=2.072220.1195 (x - 5)0.01528(3 x2 - 30 x 379)将x = 2z-77代入上式得所求多项式回归方程:2y =304.5489 -14.79452z0.18336z7-3解:本题属于一次回归的正交设计z1 - 310 z2 - 25 z3 - 225 z4 - 90

31、采用一水平,做变换:x1=,x2=,x3=,x4=1052510试验方案试验号x1x2x3x4y'111115.4211-1-13.431-11-10.84-1-1-110.35-111-1-2.56-11-11-17-1-111-3.38-1-1-1-1-3.6程序如下:data E1; input x1-x4 y; cards;11115.411-1-13.41-11-10.81-1-110.3-111-1-2.5-11-11-1-1-111-3.3-1-1-1-1-3.6proc reg data=E1;model y=x1-x4;run;The SAS System22.03

32、Wednesday. November 14, 20101The REQ Procedure Model: MODEL I Dependent Variable: yflnalysis of VarianceSourceOFSin ofSquaresMeanSquareF YaluePr > FModel468*4850017J212512.730.0317Error34.033761.84468CorrectedTotal772.51976Root MSEL159GBR-Square0.8444DependentMean-0.0625CAdj R-Sq0.870JCoeff Var-1

33、 OGG.28872Parameter Est i matesVariableOFParameter Est imateStandardErrort ValuePr > ItlIntercept1-0,062500.40897-DJ50.B9B6xl12.537500*40997G.190*0085x21L387500.409570.0430x810J6250Q.4D9370.40Q.7188x410,412600.409971J10.38B5y" =-0.0625 2.5370& 1.38750X2 0.16250x3 0.41250x4即y -87 =-0.0625

34、 2.5370归310 1.38750空 25 0.16250z3 一225 0.41250z4 90 1052510y =3.822 0.2537z1 0.2775z2 0.0065z3 0.041250z4第八章:均匀设计8- 1解:安排方案如下:.因素试验号Z1Z2Z312.06002423.48002234.85002046.270018第九章:单纯形优化设计9- 1解:(1)反射点E的坐标(5,10,0)3(2) ( i)扩大,a >1 (ii )内收缩,a <0 (iii)收缩,0< a <1(3) 新单纯形各点坐标 B(2,4, 3),A'1.5,

35、 3, 3.5),C'(2.5, 2.5, 2.5),D” (3,3.5, 2)。第十章:析因试验设计10- 4解:分析结果如下:ANOVA for Y1Source CFXIX2X3X1*X1X1*X2X1*X3X2*X2X?*X3X3«X3ModelErrorTotalMaster Model0.4060.4050.3959690.55881110.4050.4D&0.3959690.55681lC.791250.7612&0J63810.42212310.78125P.791250.763610.J221235.611255.611255.4859870

36、.06619715.611255.611255.4859870.06619734.441634.441633.672740.002143134.441634.441633.672740.00214332.4932.4931.764710.002438132.4932.4931.764710.01243826.0126.0125.429360.003958126.012G.0125.429360.00395831.6B0063L6B00630J72850.002579131.880063k6B00630,97235Q.OQ2573109.2025109*2025106.76470.0001461

37、109,2025109. ms10t,764?0,00014$3B.&D1G88.601B87.442110.i)016713801688.501637.B42110.00167J65.209Bf9.4877829 JC9930.0009749£65-205829.467PC2909930.000074&.1141671.02203355.1141671.022933270.32414270.324Predict Ive ModelF Pr > F DFSSMSF Pr > F9 5 4r it St at i st p cs i or Y1Master

38、Mode I Fred ii ct ii ve Mcicl曰 IRsqufareAdj. R-square RMSCCV32.5298. 1 I需94.70X 1.01135? 3.1099392XX2951053.1739CM - -193S41O9 .8 0 1Master ModslPredict ive MadeflINio cffects a 1 i ascd.No> ef f cct® a 1 i asedl.a U j as- St ructure f or ¥ IFred i ct i ve Mode) f 口厂 ¥1Coded Levs H

39、 s(-I>I):Y1 = 37,43333 - O.225*X1 - 0,3125*X2 - 0,8375X3 - 3,054167n<X1*X1 - 2,85*X1*X? 一 2,55i«Xf»tX3 一 2.929 167X2X2 一 5*225wX2X3 一 3.229 167X3X3Uincoded Leve I s :Y1 = 87.48333 - 0-225n*K1 0.81?5*X2 - 0.8375*K8 - 8.054187*X1 *X1 - 2,05#X1*X2 -2_55X1X3 一 2 S291B7*X2X2 一 5225*X2>

40、t«X3 一 3 - 229167>t«X3*X3Effect Estintes for Y1Master ModelPredictive ModelTerm123233K*x绷*x嚨啪XIK2K3XIXIXIX1X2X3-d.2250.357567-0.829250+556811-C.225O+357567-0.G29Z5i*556811-0,31250.357567-0.0?W0.422128-1.31250.957G87-0.B79960.422123-0.8375O.3575S7-2.84222Q,Q6B187-J.83750.357567-2.342220,

41、0B8197-3.054U70.5263245.00md.002143-3.0541E70.G26924-E.802B20.002143-2*SBD.50567&-5.63IGO20.002480-2.950.506676-5.636020.00243B-2.560.506B7G-5.04:2750,003960-?,550.506676-5.042750.003858-2.91670.52682-G.58533(1.002576-2.3291670.56824-6.565330,002678-5.2250.50567&-10.33270.000140-5.2250.50G97

42、6-10.3327Q.00014G-3,2291670+526324-8.186820J01B7'8.2281B70.526924-6.135320.001S7Estivate Std ErrEat inate Std EnrPr > It I经分析可知,在a=0.05的情况下,一次项均不显者,二次项、交互项均是显 著的。第十二章:多指标综合评价概论12-4 解:记P(U : U:J八,其中优等品10件,一等品30件,二等品40件,20件三等品,所有标准分依次是-U 0.95;-Uo.75;Uo.6;U 0.9,查标准正态表得到标准分依次是:-1.64, -0.67, 0.25;

43、 1.28;第十三章:主成分分析法和因子分析法ppt第一题解:利用SAS软件进行主成分分析主要输出结果如下:EigenvaIues of thw Correlation MeitrixE i阿軀1 ueDifferenceProportion伽ulalive13.104912520.207470900.3061ouaai22.887441B21.987228080.8B220.750330J30215G60.288093290.11S3(M刪4Q.642122260.333038180.03030.94665Q.304084130.217486370.03300J84860刖昭?州Q. 064

44、413380.995770.032184330.02974261D.00400J99780.002441780.00031.000014:38 Monday, December 2010The PRINCOMP ProcedureEijervectorsPrlnlPririZPrin3Prin4PrinSPrinCPrin?卩血Xi0.4766500.2959910.1041900.045803-.184219*.0658540J578190.246000x20.4728080.2779940JB29B3-.174010.305448-.046451-.E1B4130.527105x3D.42

45、38450.3773510J662550.05867D0.017475o.oaao4«-J 74045-.730540x4-.21288!Q.45140G<.0086440.GW088-.5394070.287855-.2434270,220126x5-.3884600.9309450.321133-.1984160.4490990.5822990.2328690.030G23xG-.9524270.4027370.1451440.279257Q.31BS36-J135710.066436-J42366X?0.214S35-J7741B0 J 404590J681B90.418

46、2010J986370,0528420.041160述0.0550340.272738*.8511620.0710550.3222010.12216S0.067111-J03300要求累积方差贡献率85%,所以取前三个作为主成分即可,Prin 1=0.476650x1+0.472808x2+0.423845x3+ 0.055034x8Prin2=0.295991x1+0.277894x2+0.377951x3+0.272736x8Prin3=0.104190x1+0.162983x2+0.156255x3 - -0.891162x8第一主成分,各项数值彼此相差不大,表示各单项指标对综合的经济效

47、益起 着相当的作用,因此第一主成分可以理解为全面能力综合指标;第二主成分,指标x4的系数明显比其它的指示系数大,而且系数为正,表 明第二主成分主要由x4决定;第三主成分,指标x8的系数明显比其它的指示系数大,而且系数为负的, 表明第三主成分主要是反应与x8相反的指标。排序结果为如下:The SAS System 20:40 Friday, Itovener 23T 2010 iPrirtS prinl23 rankprinIZ!PrinZPrinlfls id od- At 1 Ab- cdw _rn- -uu 11 Qu Phu Ab- 1 9L ro 9L- Ou A/- <=* d" OD Ab- Qv no 4" Ru 1 4, s- Qu 1 Ou _FD rD 1 -4 _rQ Qu *u oo Jul JI _u- 4 fio2.78308LH3571.120482.119140.20704帕L101120,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论