八 第三章 知识点_第1页
八 第三章 知识点_第2页
八 第三章 知识点_第3页
八 第三章 知识点_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、知识梳理第六章 图形的平移、旋转、轴对称知识结构及要点归纳:(1) 图形平移的基本要素及特点是什么?在平面内,将一个图形沿某个方向移动一定单位距离,这样的图形运动称为平移要素1:沿某一个方向移动;要素2:移动一定的单位距离平移的特点:平移不改变图形的形状和大小(2)图形平移的作图中应注意什么问题?图61因为图形经过平移后,对应点所连的线段平行,(或在同一条线上)且相等;对应线段平行(或在一条直线上)且相等;对应角相等如图61所示,对应点所连的线段ADBECF,且AD=BE=CF,BCEF,BC=EFACDF,AC=DF;对应角的关系是ABC=DEF,BCA=EFD,GAB=FDE所以在图形平移

2、的作图中要注意以下几点:首先确定图形中的关键点;将这些关键点沿指定的方向移动指定的单位距离;然后连接对应的部分形成相应的图形(3)图形旋转的基本要素及特点是什么?在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角度称为旋转角要素1:绕一个定点(旋转中心)要素2:沿某个方向向旋转一定的角度图形旋转的特点:旋转不改变图形的形状和大小(4)图形旋转的作图中应注意什么问题?因为图形经过旋转后,对应点旋转的角度都相等,方向都相同,对应点到旋转中心的距离相等,且对应线段、对应角相等如图所示,旋转中心与对应点所连的线段的关系是OA=OD,OB=OE,

3、OC=OF;对应线段的关系是AB=DE,BC=EF,CA=FD;图62对应角的关系是ABC=DEF,BCA=EFD,CAB=FDE所以在图形旋转的作图中要注意以下几个问题:首先确定旋转中心;其次确定图形的关键点;将这些关键点沿指定的方向旋转指定的角度;然后连接对应的部分,形成相应的图形(5)中心对称图形的基本要求是什么?他有什么特点?中心对称图形是一种特殊的旋转对称图形在平面内,将一个图形绕着中心旋转180后能与自身重合,则这种图形叫做中心对称图形,这个中心叫做对称中心要素1:绕一个定点(对称中心)要素2:旋转180后与自身重合中心对称图形的特点:图形绕着它自身的中心旋转180后能与自身重合(

4、6)图形中心对称的作图中应注意什么问题?因为在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分如图所示,AO=OA,BO=OBCO=OC, A、O、A三点在同一直线上,B、O、B三点在同一直线上,C、O、C三点在一条直线上反过来,如果两个图形的对称点连线的线段都经过某一点,并且图63都被该点平分,那么这两个图形一定关于这一点成中心对称所以在图形中心对称的作图中要注意以下几点:首先确定图形的对称中心;其次确定图形的关键点;作这些关键点关于对称中心的对称点;最后连接对应的部分,形成相应的图形(7)轴对称图形及图形的轴对称之间有哪些区别?如果一个图形沿某条直线折叠后,直线两

5、旁的部分能够互相重合,那么这个图形就叫轴对称图形,这条直线叫做这个图形的对称轴把一个图形沿着某条直线折叠,如果他能够与另一个图形重合,那么就说这两个图形关于这条直线对称(轴对称),这条直线就是对称轴两图形中的对应点叫做关于这条直线的对称点两者的区别是:轴对称图形是一个具有特殊性质的图形,而轴对称是说两个图形之间的位置关系两者的联系是:若把轴对称的两个图形视为一个整体,则它就是一个轴对称图形;若把轴对称图形在对称轴两旁的部分视为两个图形,则这两个图形就形成轴对称的位置关系(8)轴对称的性质是什么?关于某直线对称的两个图形是全等的如果两个图形关于某条直线对称,那么对称轴是对应点连线段的垂直平分线两

6、个图形关于某直线对称,如果他们的对应线段或延长线相交,那么交点在对称轴上另外如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线成轴对称线段、角、等腰三角形、矩形、菱形、正多边形及圆等都是常见的轴对称图形2中考考点研究本章的知识主要涉及七年级(下)第七章“生活中的轴对称”,八年级(上)第三章“图形的平移与旋转”八年级(下)第四章“相似图形”的部分内容,其中相似图形的部分内容在前边第五章中已复习到,另外还有八年级(上)第五章“位置的确定”及“等积变换”的内容,它们渗透与“空间与图形”的各章之中“生活中的轴对称”、“位似图形”以及“图形的平移和旋转”等是新教材特有的内容,设置这

7、些教学内容的目的,是使大家通过观察现实生活中的图形运动变化现象,自觉地进行数学思考,逐步形成正确的数学观,其意义是深远的由此可见,本单元何等重要,它在以后的中考中,必将占有突出的位置,而且是命题的热点由于在理解本单元的内容时,需要一定的直觉思维与辩证思维能力,所以有关的试题多属中、高档,具体来说有以下几点:(1)关于图形的对称变换关于轴对称图形:有关这一考点的试题非常多,主要涉及轴对称图形及其对称轴的识别关于轴对称的性质与作图主要考查能够按要求作出简单平面图形经过一次或几次轴对称后的图形,有关试题考查轴对称性质的问题情境常为纸片的折叠,而且着重探索基本图形如等腰三角形、矩形、菱形、正多边形、圆

8、的轴对称相关性质关于现实生活中轴对称图形的欣赏(镜面对称)与利用轴对称进行图案设计主要考查应用意识,多为容易题(2)关于图形的平移变换能够识别平移变换,探索它的变换规律并能理解和运用“对应点所连接的线段平行且相等;对应线段平行且相等;对应角相等”的规律,会解答有关平移变换的证明或计算问题 简单图形平移的作图常常考查线段、角、三角形、特殊四边形的平移作图,有时综合其它知识如函数来考查关于现实生活中图形平移变换的欣赏和应用,会运用平移变换进行简单图案的设计(3)关于图形的旋转变换能够识别旋转变换(包括中心对称变换),探索它的变换规律,并能理解和运用“每对对应点与旋转中心的连线所能组成的角都是旋转角

9、,对应点到旋转中心的距离都相等”的规律,会解答有关旋转变换的证明或计算问题简单图形旋转变换的作图常考查线段、角、三角形、特殊四边形、圆、简单组合图形的旋转变换作图(包括中心对称变换)关于现实生活中图形旋转变换(包括中心对称变换)的欣赏和应用,会运用旋转变换进行简单图案设计(4)其它变换 图形的等积变换是指图形在变换中保持面积不变,实际上对称、平移、旋转变换都是全等变换,通过这些变换,图形的形状、大小和面均未改变但实际上有些试题的设计所涉及的等积变换并非都是全等变换图形的相似与位似变换能运用相似或位似变换将一个图形放大或缩小而保持形状不变灵活运用平移,轴对称、旋转等变换的组合进行图案设计或构思计

10、算和作图题图形与坐标,用坐标的方法研究图形的运动变换在直角坐标系(或方格纸)中,研究图形的位置的各种变换,从而使变换后的图形中各点的坐标也在进行规律的变化,如在直角坐标系中,图形沿轴向右(左)平移个单位,则图形上每一点纵坐标不变,而横坐标都增加(减少)了;图形沿轴向上(下)平移个单位,则图形上每一点横坐标不变,而纵坐标都增加(减少)了;图形关于轴对称时,对应点的横坐标相同,纵坐标互为相反数;图形绕着某一点旋转时,图形上每一点到旋转中心的距离不变总之图形的变换是课标中加强的部分,加强这部分内容的学习可进一步丰富对空间观念的认识和感受,体验在现实生活中的应用,发展空间观念,所以是中考的重要内容,题型很丰富,难度也不一致,各层次可能都有,有时也可能和其它知识综合出现在压轴题中,这类问题既考查学生分析、综合、概括、逻辑推理的能力,考查几何建模以及探究活动的能力,是学生展示个体思维的好平台,又考查了学生对几何与代数之间的联系、多角度、多层次综合运用数学知识、数学思想方法分析和解决问题的能力复习备考时要注意以下几个方面的问题:(1)要重视巩固“知识梳理”中所涉及到的基本知识、基本规律、与基本技能(2)要注意通过大量的观察、动手操作、团设计等实践活

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论