版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、新课标人教版课件系列新课标人教版课件系列高中数学必修必修41121任意角的三角函数 2教学目标教学目标 1、知识与技能 (1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);(2)理解任意角的三角函数不同的定义方法;(3)了解如何利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(4)掌握并能初步运用公式一;(5)树立映射观点,正确理解三角函数是以实数为自变量的函数. 2、过程与方法 初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任
2、意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.3 3、情态与价值 任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而
3、且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解. 二、教学重、难点二、教学重、难点 重点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一). 难点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.41.2 1.2 任意角的三角函数任意角的三角函数 1.2.1 1.2.1 任意角的三角函数任意角的三角函数第一课时第一课时5问题提出问题提出1.1.角的概念是由几个要素构成的,具体角的概念是由几个要素构成
4、的,具体怎样理解?怎样理解? (1 1)角是由平面内一条射线绕其端点从一)角是由平面内一条射线绕其端点从一个位置旋转到另一个位置所组成的图形个位置旋转到另一个位置所组成的图形. .(2 2)按逆时针方向旋转形成的角为)按逆时针方向旋转形成的角为正角正角,按顺时针方向旋转形成的角为按顺时针方向旋转形成的角为负角负角,没有,没有作任何旋转形成的角为作任何旋转形成的角为零角零角. .(3 3)角的大小是任意的)角的大小是任意的. .62.2.什么叫做什么叫做1 1弧度的角?度与弧度是怎弧度的角?度与弧度是怎样换算的?样换算的?(1 1)等于半径长的圆弧所对的圆心角叫做)等于半径长的圆弧所对的圆心角叫
5、做1 1弧度的角弧度的角. . 3. 3. 与角与角终边相同的角的一般表达式终边相同的角的一般表达式是什么?是什么?2()kkZbap=+= =k360k360(kZkZ)或)或 2()kkZbap=+?(2 2)180180 rad.rad.74.4.如图,在直角三角形如图,在直角三角形ABCABC中,中,sinsin,coscos,tantan分别叫做角分别叫做角的的正弦、余正弦、余弦和正切,弦和正切,它们的值分别等于什么?它们的值分别等于什么?A AB BC C5.5.当角当角不是锐角时,我们必须对不是锐角时,我们必须对sinsin,coscos,tantan的值进行推广,的值进行推广,
6、以适应任意角的需要以适应任意角的需要. . si nB CA Ba=cosA CA Ba=tanB CA Ca=8知识探究(一):任意角的三角函数知识探究(一):任意角的三角函数 思考思考1 1:为了研究方便,我们把为了研究方便,我们把锐角锐角放到直角坐标系中,并使角放到直角坐标系中,并使角的顶点与的顶点与原点原点O O重合重合, ,始边与始边与x x轴的非负半轴重合轴的非负半轴重合. .在角在角的终边上取一点的终边上取一点P P(a,b b), ,设点设点P P与原点的距离为与原点的距离为r r,那么,那么,sinsin,coscos,tantan的值分别如何表示?的值分别如何表示?9sin
7、brsinbrsinbrcosarcosartanbatanba思考思考2 2:对于确定的角对于确定的角,上述三个比值,上述三个比值是否随点是否随点P P在角在角的终边上的位置的改变的终边上的位置的改变而改变呢?为什么?而改变呢?为什么? x xy yo oP(P(a,b b) )r rA AB B10思考思考3 3:为了使为了使sinsin,coscos的表示式更的表示式更简单,你认为点简单,你认为点P P的位置选在何处最好?的位置选在何处最好?此时,此时,sinsin,coscos分别等于什么?分别等于什么?x xy yo oP(P(a,b b) )sinbcosatanba111思考思考
8、4 4:在直角坐标系中,以原点在直角坐标系中,以原点O O为圆为圆心,以单位长度为半径的圆称为心,以单位长度为半径的圆称为单位圆单位圆. .对于角对于角的终边上一点的终边上一点P P,要使,要使|OP|=1|OP|=1,点点P P的位置如何确定?的位置如何确定? 的终边的终边O Ox xy yP P12思考思考5 5:设设是一个任意角,它的终边是一个任意角,它的终边与单位圆交于点与单位圆交于点P P(x x,y y),为了不与),为了不与当当为锐角时的三角函数值发生矛盾,为锐角时的三角函数值发生矛盾,你认为你认为sinsin,coscos,tantan对应的值对应的值应分别如何定义?应分别如何
9、定义? 的终边的终边P(xP(x,y)y)O Ox xy ysinycosxtan(0)yxx13思考思考6 6:对于一个任意给定的角对于一个任意给定的角,按,按照上述定义,对应的照上述定义,对应的sinsin,coscos,tantan的值是否存在?是否惟一?的值是否存在?是否惟一?的终边的终边P(xP(x,y)y)O Ox xy ysinycosxtan(0)yxx14正、余弦函数的定义域为正、余弦函数的定义域为R R,正切函数的定义域是正切函数的定义域是 |,2RkkZpaap喂+?思考思考7 7:对应关系对应关系 , , 都是以角为自变量,以单位圆都是以角为自变量,以单位圆上的点的坐标
10、或坐标的比值为函数值的函数,上的点的坐标或坐标的比值为函数值的函数,分别称为分别称为正弦函数正弦函数、余弦函数余弦函数和和正切函数正切函数,并统称为并统称为三角函数三角函数,在弧度制中,这三个三,在弧度制中,这三个三角函数的定义域分别是什么?角函数的定义域分别是什么?sinycosxtan(0)yxx15思考思考8 8:若点若点P P(x x,y y)为角)为角终边上任终边上任意一点,那么意一点,那么sinsin,coscos,tantan对应对应的函数值分别等于什么?的函数值分别等于什么?P(xP(x,y)y)O Ox xy y22sinyxy22cosxxytanyxtanyxtanyxt
11、anyx16知识探究(二):三角函数符号与公式知识探究(二):三角函数符号与公式 思考思考1 1:当角当角在某个象限时,设其终在某个象限时,设其终边与单位圆交于点边与单位圆交于点P P(x x,y y),根据三),根据三角函数定义,角函数定义,sinsin,coscos,tantan的的函数值符号是否确定?为什么?函数值符号是否确定?为什么?sinycosxtan(0)yxx的终边的终边P(xP(x,y)y)O Ox xy y17思考思考2 2:设设是一个任意的象限角,那么是一个任意的象限角,那么当当在第一、二、三、四象限时,在第一、二、三、四象限时,sinsin的取值符号分别如何?的取值符号
12、分别如何?coscos,tantan的的取值符号分别如何?取值符号分别如何?sinycosxtan(0)yxx18sinsincos思考思考3 3:综上分析,各三角函数在各个象限综上分析,各三角函数在各个象限的取值符号如下表:的取值符号如下表: 三角函数三角函数第一象限第一象限 第二象限第二象限 第三象限第三象限 第四象限第四象限sincoscostan+ + + + + + +你有什么办法记住这些信息?你有什么办法记住这些信息? 19思考思考4 4:如果角如果角与与的终边相同,那么的终边相同,那么sinsin与与sinsin有什么关系?有什么关系?coscos与与coscos有有什么关系?什
13、么关系?tantan与与tantan有什么关系?有什么关系?思考思考5 5:上述结论表明,上述结论表明,终边相同的角的同终边相同的角的同名三角函数值相等,名三角函数值相等,如何将这个性质用一组如何将这个性质用一组数学公式表达?数学公式表达?公式一:公式一: sin(2)sinkcos(2)coskkZtan(2)tankkZ( )20思考思考6 6:若若sin=sinsin=sin,则角,则角与与的的终边一定相同吗?终边一定相同吗? 思考思考7 7:在求任意角的三角函数值时,上在求任意角的三角函数值时,上述公式有何功能作用?述公式有何功能作用?2p2p2p可将求任意角的三角函数值,转化为求可将
14、求任意角的三角函数值,转化为求0 0 (或(或0 0360360) )范围内的三角函数值范围内的三角函数值. . 2p思考思考8 8:函数的对应形式有一对一和多对一两函数的对应形式有一对一和多对一两种,三角函数是哪一种对应形式?种,三角函数是哪一种对应形式? 21O Oxy y53理论迁移理论迁移例例1 1 求求 的正弦、余弦和正切值的正弦、余弦和正切值. .53例例2 2 已知角的终边过点已知角的终边过点P P(3 3,4 4),),求角的正弦、余弦和正切值求角的正弦、余弦和正切值. . O Ox xy yP P(3 3,4 4)13( ,)22P-22 例例3 3 求证:当且仅当不等式组求
15、证:当且仅当不等式组 成立时,角成立时,角为第三象限角为第三象限角. . sin0tan0 例例4 4 确定下列三角函数值的符号确定下列三角函数值的符号. .(1 1) ; ;(2 2) ; ;(3 3) ; ;(4 4) ; ; (5 5) ; ;(6 6) . .cos250sin()4tan( 672 )tan39cos411tan()623小结作业小结作业1.1.三角函数都是以角为自变量,在弧度三角函数都是以角为自变量,在弧度制中,三角函数的自变量与函数值都是制中,三角函数的自变量与函数值都是在实数范围内取值在实数范围内取值. .2.2.三角函数的定义是三角函数的理论基三角函数的定义是
16、三角函数的理论基础,三角函数的定义域、函数值符号、础,三角函数的定义域、函数值符号、公式一等,都是在此基础上推导出来的公式一等,都是在此基础上推导出来的. . 244.4.一个任意角的三角函数只与这个角的一个任意角的三角函数只与这个角的终边位置有关,与点终边位置有关,与点P P(x x,y y)在终边上)在终边上的位置无关的位置无关. .公式一揭示了三角函数值呈公式一揭示了三角函数值呈周期性变化,即角的终边绕原点每旋转周期性变化,即角的终边绕原点每旋转一周,函数值重复出现一周,函数值重复出现. .3.3.若已知角若已知角的一个三角函数符号,则的一个三角函数符号,则角角所在的象限有两种可能;若已
17、知角所在的象限有两种可能;若已知角的两个三角函数符号,则角的两个三角函数符号,则角所在的所在的象限就惟一确定象限就惟一确定. .25作业:作业:P15 P15 练习:练习:1 1,2 2,5 5,7.7.3 3,4 4,6 6 做在书上做在书上261.2 1.2 任意角的三角函数任意角的三角函数 1.2.1 1.2.1 任意角的三角函数任意角的三角函数第二课时第二课时27问题提出问题提出1.1.设设是一个任意角,它的终边与单位是一个任意角,它的终边与单位圆交于点圆交于点P P(x x,y y),角),角的三角函数的三角函数是怎样定义的?是怎样定义的?sinycosxcosxcosxtan(0)
18、yxx2.2.三角函数在各象限的函数值符号分别三角函数在各象限的函数值符号分别如何?如何? 一全正,二正弦,三正切,四余弦一全正,二正弦,三正切,四余弦. .283.3.公式公式 , , ( ).( ).其数学意义如何?其数学意义如何? sin(2)sinkcos(2)cosktan(2)tanktan(2)tankkZ4.4.角是一个几何概念,同时角的大小也角是一个几何概念,同时角的大小也具有数量特征具有数量特征. .我们从数的观点定义了我们从数的观点定义了三角函数,如果能从图形上找出三角函三角函数,如果能从图形上找出三角函数的几何意义,就能实现数与形的完美数的几何意义,就能实现数与形的完美
19、统一统一. . 终边相同的角的同名三角函数值相等终边相同的角的同名三角函数值相等. .29知识探究(一):知识探究(一):正弦线和余弦线正弦线和余弦线 思考思考1 1:如图,设角如图,设角为第一象限角,其为第一象限角,其终边与单位圆的交点为终边与单位圆的交点为P P(x x,y y),则),则 , 都是正数,你能分都是正数,你能分别用一条线段表示角别用一条线段表示角的正弦值和余弦的正弦值和余弦值吗?值吗?sinycosxP P(x x,y y)O Ox xy yM|sinMPy|cosOMx30思考思考2 2:若角若角为第三象限角,其终边为第三象限角,其终边与单位圆的交点为与单位圆的交点为P
20、P(x x,y y),则),则 , 都是负数,此时都是负数,此时角角的正弦值和余弦值分别用哪条线的正弦值和余弦值分别用哪条线段表示?段表示?sinycosx|sinMPy|sinMPy|cosOMxP P(x x,y y)O Ox xy yM M31思考思考3 3:为了简化上述表示,我们设想为了简化上述表示,我们设想将线段的两个端点规定一个为始点,另将线段的两个端点规定一个为始点,另一个为终点,使得线段具有方向性,带一个为终点,使得线段具有方向性,带有正负值符号有正负值符号. .根据实际需要,应如何根据实际需要,应如何规定线段的正方向和负方向?规定线段的正方向和负方向?规定:线段从始点到终点与
21、坐标轴同向规定:线段从始点到终点与坐标轴同向时为正方向,反向时为负方向时为正方向,反向时为负方向. . 32思考思考4 4:规定了始点和终点,带有方向的线规定了始点和终点,带有方向的线段,叫做段,叫做有向线段有向线段. .由上分析可知,当角由上分析可知,当角为第一、三象限角时,为第一、三象限角时,sinsin、coscos可分可分别用有向线段别用有向线段MPMP、OMOM表示,即表示,即MP= sinMP= sin,OM=cosOM=cos,那么当角,那么当角为第二、四象限角为第二、四象限角时,你能检验这个表示正确吗?时,你能检验这个表示正确吗? P P(x x,y y)O Ox xy yM
22、MP P(x x,y y)O Ox xy yM M33思考思考5 5:设角设角的终边与单位圆的交点的终边与单位圆的交点为为P P,过点,过点P P作作x x轴的垂线,垂足为轴的垂线,垂足为M M,称,称有向线段有向线段MPMP,OMOM分别为角分别为角的的正弦线正弦线和和余弦线余弦线. .当角当角的终边在坐标轴上时,的终边在坐标轴上时,角角的正弦线和余弦线的含义如何?的正弦线和余弦线的含义如何?P PO Ox xy yM MO Ox xy yP PP P34思考思考6 6:设设为锐角,你能根据正弦线和为锐角,你能根据正弦线和余弦线说明余弦线说明sinsincoscos1 1吗?吗?P PO O
23、x xy yMMPMPOMOMOP=1OP=135知识探究(二):知识探究(二):正切线正切线 A AT T思考思考1 1:如图,设角如图,设角为第一象限角,其为第一象限角,其终边与单位圆的交点为终边与单位圆的交点为P P(x x,y y),则),则 是正数,用哪条有向线段表示是正数,用哪条有向线段表示角角的正切值最合适?的正切值最合适?tanyxP PO Ox xy yM MtanyATx36AT T思考思考2 2:若角若角为第四象限角,其终边为第四象限角,其终边与单位圆的交点为与单位圆的交点为P P(x x,y y),则),则 是负数,此时用哪条有向线段表示角是负数,此时用哪条有向线段表示
24、角的正切值最合适?的正切值最合适?tanyxP PO Ox xy yM MtanyATx37A AT TA AT TP PO Ox xy yM M思考思考3 3:若角若角为第二象限角,其终边为第二象限角,其终边与单位圆的交点为与单位圆的交点为P P(x x,y y),则),则 是负数,此时用哪条有向线段表示角是负数,此时用哪条有向线段表示角的正切值最合适?的正切值最合适?tanyxtanyATx38tanyx思考思考4 4:若角若角为第三象限角,其终边为第三象限角,其终边与单位圆的交点为与单位圆的交点为P P(x x,y y),则),则 是正数,此时用哪条有向线段表示角是正数,此时用哪条有向线
25、段表示角的正切值最合适?的正切值最合适?P PO Ox xy yM MA AT TA AT TtanyATx39思考思考5 5:根据上述分析,你能描述正切线根据上述分析,你能描述正切线的几何特征吗?的几何特征吗?过点过点A A(1 1,0 0)作单位圆的切线,与角)作单位圆的切线,与角的终边或其反向延长线相交于点的终边或其反向延长线相交于点T T,则,则AT=tanAT=tan. .A AT TO Ox xy yP PA AT TO Ox xy yP P40思考思考6 6:当角当角的终边在坐标轴上时,角的终边在坐标轴上时,角的正切线的含义如何?的正切线的含义如何?si ntan444pppsi ntan444pppsi n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年凝血分析仪器试剂项目资金申请报告代可行性研究报告
- 强化融资租赁-提升中小企业财务自由度
- 数据要素产业集聚区评估指南编制说明
- 2.2 30°,45°,60°角的三角函数值 同步练习
- 【浙教】期中模拟卷02【1-4章】
- 盘山的导游词(30篇)
- 画房子的美术教案6篇
- 销售季度个人述职报告
- 销售员成功沟通技巧(3篇)
- 铁路心得体会模板5篇
- GB/T 32722-2016土壤质量土壤样品长期和短期保存指南
- GB/T 30649-2014声屏障用橡胶件
- GB/T 25087-2010道路车辆圆形、屏蔽和非屏蔽的60 V和600 V多芯护套电缆
- 南京理工大学PPT模板
- GB/T 1029-1993三相同步电机试验方法
- GA 838-2009小型民用爆炸物品储存库安全规范
- 《化工原理》试题库答案
- FANUC用户宏程序课件
- 2023年伊犁哈萨克自治州伊宁辅警招聘笔试题库及答案解析
- 小儿爆发性心肌炎诊断与治疗课件
- 妊娠晚期促子宫颈成熟与引产指南
评论
0/150
提交评论