左删失右截断数据的分位数的固定宽度序贯置信区间估计-计量经济_第1页
左删失右截断数据的分位数的固定宽度序贯置信区间估计-计量经济_第2页
左删失右截断数据的分位数的固定宽度序贯置信区间估计-计量经济_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、左删失右截断数据的分位数的固定宽度序贯置信区间估计-计量经济    一、引言在生存分析探究中,一些个体生存时间的开始点在试验开始之前,所以人们无法观察到这些个体在进进试验之前的数据。这样所获得的个体数据就是左截断数据。假如个体一旦进进试验,人们可能在试验结束之前未能完全观察到这个个体的全部过程,因此引起了右删失的数据。这样的左截断右删失数据是生存分析中经常碰到的数据之一。具体地说,设(X,T,Y)表示三维的随机变量,其中X为感喜好的随机变量,具有连续的分布函数F;T是左截断随机变量具有分布函数G,以及Y是右删失随机量具有分布L。假定X是和(T,Y)独立的

2、,但T和Y可以是相关的。所谓左截断右删失数据是:假如ZT,(Z,T,)是可以观察的,其中Z=XY=min(X,Y)和=I(XY)。而当ZT时,人们无法观察到任何数据。不失一般性,设P(TZ)0和W表示Z的分布函数,即有1-W=(1-F)(1-L)。在文中,设(Z,i,T,i,i)是一列独立同分布的观察样本且和(Z,T,),i=1,2,n具有相同的分布。又设表示分布函数的累积风险函数。周知,累积风险函数和分布函数F是一对一的关系,具有如下表示式附图轻易证实附图在左截断右删失数据下,固定宽度的分位数序贯置信区间估计是生存分析中的重要探究对象之一,一个例子是基于分位数估计对探究对象进行分类。有关的真

3、实数据是心脏病的心率数据(数据见8),目的是进行它和正凡人数据的比较,由于没有足够多的数据和所获数据的不完全性,难于对分位数进行正确估计。因此正确分类也是不可能的。但一个重要而有效的解决方法是进行序贯试验,在给定所要求的精度下,适当增加试验样本。在独立同分布情况下,Choudhury,Serfling9探究了相类似的固定长度的序贯置信区间。在右删失数据下,Gijbels,Veraverbeke10,11以及Wang,Hettmansperger12探究了这样的置信区间,Gürler,Stute,Wang4考虑了左截断的情况。在生存分析中,序贯方法是生物统计中一种广泛应用的方法之一,它

4、的优点是节约本钱和试验时间,在试验中可以由它来控制所需的时间和本钱进行抽样。在实际工作中,试验者往往要求在给定的置信水平和满足一定的精度下,对所感喜好的量进行统计估计和推断,同时不要浪费太多的资源。因此,此时的序贯区间估计就是一种很好的选择。具体体现是,人们首先要求统计推断满足一定精度,即是给定固定区间的长度,当置信水平已知(即给定某个置信水平)的情况下进行抽样。这些方法在大多数的应用中是很乎合实际要求的。这就是所谓固定宽度的序贯置信区间估计。本文就在这方面进行探究。为了证实分位数的固定宽度序贯置信区间的渐近性质,我们给出一个扩展的p,n分位估计的Bahadur的强表示定理,其中p,n可以是一

5、个随机量。当,pn是,p强相合估计。在某些简单的条件下,的Bahadur表示是附图其中f=F'和R,n是剩余项。在下一节,我们给出剩余项R,n的几乎处处渐近收敛速度,其中是一列收敛于p的随机变量。对于非凡的应用,p,n一般定义为乘积限估计的渐近方差的泛函。此表示定理在推导分位数估计的大样本性质上具有广泛的应用,此结果是13中重要结果的推广。为了获得分位数的置信区间估计,这种推广是必要的。在此节的最后,给出相合的渐近方差估计。为方便,假设Y和T是非负的随机变量。在本文,我们多次用到如下的积分条件,对于任意TT,W,附图根据7的结果,我们表述如下的引理引理1.1假定a,Ga,W或a,G=a

6、,W和(3)成立。当a,Wxbb,W,一致地有附图其中表示概率收敛。在右删失数据下,Cheng14,Aly,Horváth15,Lo,Singh16探究了Bahadur表示中剩余项R,n(p)的几乎处处收敛速度。Gijbels,Veraverbeke10,11给出了Ghosh型的弱表示定理。Zhou17考虑了光滑分位数估计和给出了其一致Bahadur表示定理。Padgett18获得了些核光滑的分位数估计的渐近性质。Gürler,Stute,Wang4首先考虑了左截数据下的分位数估计的各种渐近性质。    二、Bahadure表示定理及

7、固定长度置信区间在这节,给出分位数估计表示式(2)的结果。为些我们需要如下的条件。条件(i)对于TT,W,附图附图固然f的估计轻易获得,但是卷进麻烦的窗宽选择,因此尽量不用其非参数估计。使用Y,i的次序统计量可以简单地构造分位数的置信区间,克服使用f的非参数估计的窗宽选择的麻烦。这置信区间是附图有关固定长度的序贯区间方法(11)及其所要求的随机样本大小,我们轻易推导出如下定理。附图附图在这里,我们进行一个小的计算机模型试验,目的是在左截断右删失数据下,检验分位数估计序贯方法的有效性,以及在给定精度下,如何有效地进行序贯试验,即在更短的试验时间里,获得合乎精度要求的分位数估计。我们的随机试验是在

8、如下的条件下进行的。设(X,T,Y)分别来自指数分布的随机变量,对应于指数分布的参数分别是,1,2,3,它们的值分别取1,1.5,0.25。共进行500次试验,每次产生样本数分别是100,200和500。因此,在这些设计下,被删失的数据占20而且被截断的占45。获得的结果如上表。其它参数的组合下进行了同样的模拟试验,所获结果和此情况相似,故略。在此我们仅列出样本为200的结果,其它情况略。表中的是指数分布p-分位数的估计,对于每个分位数的序贯估计分别取3种不同的精度。d,1的取法是全样本下的分位数估计值除以1.96,d,2是d,1的一半。而d,3是全样本估计的标准差乘以1.96的两倍再除于,n

9、是全部样本的数目。sd(Q)(se)指的是标准方差和在括号里面的是500次分位估计值的标准方差。Bias是估计相对误差。n(d)是序贯方法所使用的样本数。Covag是分位数估计落进95的置信区间的次数。这个数值越靠近95越好。从表中我们可以看出,序贯估计是相当精确的。同时,我们可以从下面p-分位数估计的直方图中可以看出,不管是全样本还是部分样本的分位数估计的分布外形近似于正态分布,而且它们是非常相近。最后,从表中看出当分位点靠近分布的尾部时,标准差估计不足,这主要是在方差估计中我们使用了(1-p)2这个因子。相信适当的修改改进这个估计。附图分位点p=0.5,指数分布p分位数的真值是0.6928。图(a)是全样天职位数估计,估

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论