




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、超越140分的高考数学把关题解析30讲1杭州二模21 (本小题满分14分)第21题设双曲线=1( a > 0, b > 0 )的右顶点为A,P是双曲线上异于顶点的一个动点,从A引双曲线的两条渐近线的平行线与直线OP分别交于Q和R两点.(1) 证明:无论P点在什么位置,总有|2 = |·| ( O为坐标原点);(2) 若以OP为边长的正方形面积等于双曲线实、虚轴围成的矩形面积,求双曲线离心率的取值范围;解:(1) 设OP:y = k x, 又条件可设AR: y = (x a ), 解得:= (,), 同理可得= (,), |·| =|+| =. 4分 设 = (
2、m, n ) , 则由双曲线方程与OP方程联立解得:m2 =, n2 = , |2 = :m2 + n2 = + = ,点P在双曲线上,b2 a2k2 > 0 . 无论P点在什么位置,总有|2 = |·| . 4分(2)由条件得:= 4ab, 2分即k2 = > 0 , 4b > a, 得e > 2分22. (本小题满分12分)已知常数a > 0, n为正整数,f n ( x ) = x n ( x + a)n ( x > 0 )是关于x的函数.(1) 判定函数f n ( x )的单调性,并证明你的结论.(2) 对任意n ³ a , 证明
3、f n + 1 ( n + 1 ) < ( n + 1 )fn(n)解: (1) fn ( x ) = nx n 1 n ( x + a)n 1 = n x n 1 ( x + a)n 1 , a > 0 , x > 0, fn ( x ) < 0 , f n ( x )在(0,+)单调递减. 4分(2)由上知:当x > a>0时, fn ( x ) = xn ( x + a)n是关于x的减函数, 当n ³ a时, 有:(n + 1 )n ( n + 1 + a)n £ n n ( n + a)n. 2分又 f n + 1 (x ) =
4、( n + 1 ) xn ( x+ a )n ,f n + 1 ( n + 1 ) = ( n + 1 ) (n + 1 )n ( n + 1 + a )n < ( n + 1 ) nn ( n + a)n = ( n + 1 ) nn ( n + a )( n + a)n 1 2分( n + 1 )fn(n) = ( n + 1 )nn n 1 ( n + a)n 1 = ( n + 1 )n n n( n + a)n 1 , 2分( n + a ) > n ,f n + 1 ( n + 1 ) < ( n + 1 )fn(n) . 2分2杭州一模21. (本小题满分12分
5、)已知:y = f (x) 定义域为1,1,且满足:f (1) = f (1) = 0 ,对任意u ,vÎ1,1,都有|f (u) f (v) | | u v | .(1) 判断函数p ( x ) = x2 1 是否满足题设条件?(2) 判断函数g(x)=,是否满足题设条件?解: (1) 若u ,v Î 1,1, |p(u) p (v)| = | u2 v2 |=| (u + v )(u v) |,取u = Î1,1,v = Î1,1, 则 |p (u) p (v)| = | (u + v )(u v) | = | u v | > | u v |,
6、所以p( x)不满足题设条件.(2)分三种情况讨论:10. 若u ,v Î 1,0,则|g(u) g (v)| = |(1+u) (1 + v)|=|u v |,满足题设条件;20. 若u ,v Î 0,1, 则|g(u) g(v)| = |(1 u) (1 v)|= |v u|,满足题设条件;30. 若uÎ1,0,vÎ0,1,则: |g (u) g(v)|=|(1 u) (1 + v)| = | u v| = |v + u | | v u| = | u v|,满足题设条件;40 若uÎ0,1,vÎ1,0, 同理可证满足题设条件.综合
7、上述得g(x)满足条件.22. (本小题满分14分)已知点P ( t , y )在函数f ( x ) = (x ¹ 1)的图象上,且有t2 c2at + 4c2 = 0 ( c ¹ 0 ).(1) 求证:| ac | ³ 4;(2) 求证:在(1,+)上f ( x )单调递增.(3) (仅理科做)求证:f ( | a | ) + f ( | c | ) > 1.证:(1) tÎR, t ¹ 1, = (c2a)2 16c2 = c4a2 16c2 ³ 0 , c ¹ 0, c2a2 ³ 16 , | ac |
8、 ³ 4. (2) 由 f ( x ) = 1 ,法1. 设1 < x1 < x2, 则f (x2) f ( x1) = 1 1 + = . 1 < x1 < x2, x1 x2 < 0, x1 + 1 > 0, x2 + 1 > 0 ,f (x2) f ( x1) < 0 , 即f (x2) < f ( x1) , x ³ 0时,f ( x )单调递增. 法2. 由f ( x ) = > 0 得x ¹ 1, x > 1时,f ( x )单调递增.(3)(仅理科做)f ( x )在x > 1时
9、单调递增,| c | ³ > 0 , f (| c | ) ³ f () = = f ( | a | ) + f ( | c | ) = + > +=1. 即f ( | a | ) + f ( | c | ) > 1.3南通二模19(本小题满分15分)设定义在R上的函数(其中R,i=0,1,2,3,4),当x= 1时,f (x)取得极大值,并且函数y=f (x+1)的图象关于点(1,0)对称(1) 求f (x)的表达式;(2) 试在函数f (x)的图象上求两点,使这两点为切点的切线互相垂直,且切点的横坐标都在区间上;(3) 若,求证:解:(1)5分 (2)或10分 (3)用导数求最值,可证得15分20(本小题满分13分)设M是椭圆上的一点,P、Q、T分别为M关于y轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论