2021届河南省天一大联考高三上学期阶段性测试(三)数学(理)_第1页
2021届河南省天一大联考高三上学期阶段性测试(三)数学(理)_第2页
2021届河南省天一大联考高三上学期阶段性测试(三)数学(理)_第3页
2021届河南省天一大联考高三上学期阶段性测试(三)数学(理)_第4页
2021届河南省天一大联考高三上学期阶段性测试(三)数学(理)_第5页
免费预览已结束,剩余4页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、绝密启用前天一大联考2020-2021学年高中毕业班阶段性测试(三)理科数学考生注意:1 .答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡.上,并将考生号条形码粘贴在答题卡上的 指定位置。2 .回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干 净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3 .考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。L已知集合 M = xl2x29x 5<0, N=xly= lg(10x

2、)> 则 MON=A.xlx<10 B.RC.xl <x<5)D.xl5<x<1022/2,复数z= 在复平面内对应的点位于1-zA.第一象限B .第二象限C .第三象限 D.第四象限 3.三国时期的吴国数学家赵爽根据一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明,他 所绘制的勾股圆方图被后世称为“赵爽弦图”。如图所示的图形就是根据赵爽弦图绘制而成的,图中的四边 形都是正方形,三角形都是相似的直角三角形,且两条直角边长之比均为2。现从整个图形内随机取一点, 则该点取自小正方形(阴影部分)内的概率为4,函数f(x)=3sin(n4-x)cos2x

3、+3在,巳上的最小值为2 23 7A.-l B.-C.-D.18 8t + 25 .已知函数f(x)是奇函数,且当x<0时,f(x)=一,则f(x)的图象在点(2, f(2)处的切线的方程是 r+1A.5x-y-2=0B.x2y+5=0C.2x-y-4=0D.x5y2=06 .已知各项均为正数的等比数列“满足a】a3= , a2a4=1,则a“ = 4A.64B.128C.256D.5127 .已知函数f(x)=2sin(3x+(p)(co>0, kpk2)的部分图象如图,则A.f(x)=2sin(2x) 68 .f( )= y/212Cf(x)的图象的对称中心为(kn ,O)(k

4、GZ)12D.不等式f(x)21的解集为曲,kjr+-(kGZ)8 .己知(x2a)(x+1)6的展开式中所有项的系数之和为一64,则其常数项为xA.-25B.-5C.20D.559 .已知抛物线C: y2=2px(p>0),以P( 2, 0)为圆心,半径为5的圆与抛物线C交于A, B两点,若IOAI=J万(点O为坐标原点),则p=A.4B.8C.10D.1610 .若实数 a, b 满足 2a=2a, log2(b1)=3b,则 a+b=107A.3B.C.-D.43211.设m£R,动直线八:x+n】y=0过定点A,动直线6: mx-ym+3=0过定点B,且八,L交于点P(

5、x,y),则IPAI+IPBI的最大值是A.M B.2>/5C.5D.1012,设函数f(x)=±,g(x)=xeS若对任意xi, x2g(0, e,不等式四12 W 小”恒成立,则正数kxk + k的取值范闱为41尸4A.( > -J B.(e, 4C(0, -D.(0,e e4-ee -4 二、填空题:本题共4小题,每小题5分,共20分。2x-3y + 6>013 .已知x, y满足约束条件(3x + y 3<0 ,则z=3x-2y的最大值为。 x + 3y + 3>02514 .已知 A(l, 0), B(m, 2), C(0, 5),若 AB-B

6、C =,则 m=°4215 .已知双曲线x2 L=1上有三个点A, B, C,且AB, BC, AC的中点分别为D, E, F,用字母k表 8不斜率,若koD + k()E + koi: =-8(点O为坐标原点,且koD » koE » 均不为零),则1 1 1F+=ok k k “AB 八 8c AC16 .已知四棱锥P-ABCD的底而ABCD是边长为2的正方形,侧棱长均为卡。以P为球心,拽为半 3径的球面与底面ABCD的交线总长度为。三、解答题:共70分。解答应写出文字说明,证明过程或演算步骤。17 .(10 分),a q ,- sinA sinB a2 +b

7、2 -c2在ABC中,内角A, B, C的对边分别为a, b, c,已知+ =,a b 2abc求sinC和cosC:(II)若 a=J?b, AABC 的面积为 2,求 c。18 .(12 分)已知等差数列an的前n项和为Sn,bn)是等比数列,ai=5, Sm=185, ab=5, a2b23= 1 o(I)求aj和bj的通项公式:(H)求数列anbn的前n项和To19 .(12 分)某工厂生产甲、乙两种电子产品,甲产品的正品率为p(p为常数且0<p<0.9),乙产品的正品率为p+0.1。生产1件甲产品,若是正品,则可盈利4万元,若是次品,则亏损1万元;生产1件乙产品,若是正品

8、,则可盈利6万元,若是次品,则亏损2万元。设生产各件产品相互独立。记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,若E(X)=8.2,求p:(H)在的条件下,求生产4件甲产品所获得的利润不少于11万元的概率。20 .(12 分)如图所示,四面体ABCD的顶点都在圆柱的上、下底面圆周上,且AB是下底面圆的直径,BC是圆柱的 母线。A求证:AD1CD: (II)若AB = BC,异面直线AB与CD所成的角为30。,求二而角A-BD-C的余弦值。21.(12 分)已知椭圆C:二十二=1(。>>0)的离心率为WE,左、右焦点分别为R, F2,过点R和点(0, 1)的直 cr3

9、线与椭圆交于M, N两点,F?到直线MN的距离为 求椭圆C的方程: 633(H)若点P(0, t)满足PM PN<-Z + y,求PMN的面积的最大值。22.(12 分)己知函数 f(x)=a(lnx+ -4)+kx2+2(aGR)ox若x=应是f(x)的极小值点,求a的取值范围:3(II)若a=-L f(x)为f(x)的导函数,证明:当 1WxW2时,f(x)2-4 -天一大联考20202021学年高中毕业班阶段性测试(三)理科数学答案一、选择题:本题共12小题,怎小题5分,共60分.1 .答案C命题意图 本题号杳不等式的解法,函数的定义域.交集运算.解析 因为 Ullr2 -9.V-

10、5 <()| =卜 -;<”<5,N=-lg(10 -x) ; =10: ,所以 VHn = T<.v <52 .答案D命题意图 本题考查麦数的概念与运算,复数的几何意义.解析 因为二一1所以z =至二- 2 = 1 - i,所以z在复平面内对应的点为(1, - 1),位于第四 1 - ( 1 -l)( 1 +0象限.3 .答案B命题意图 本题考查数学文化.几何概叫解析 设小正方形的边长为1,则,小正方形相邻的四个直用三用形的宜角边长分别为2和1 从而可彳导斜边 长为万,外围较大的直角:角形的巨向边长分别为2"5和6,于是大正方形的边长为5,根据几何慨型

11、的概率 计克公式可知所求概率为9=今.4 .答案C命题意图本圈考查三角忸等变换,二次函数的最值.解析 /(#) - 3sin( tt + .r) - cos 2x + 3 = -3sin .v - ( 1 - 2sinv) +3 =2sin:.v -3sin ,v + 2 =21 in x 一为* £ -,,段卜所以wn x6 - 1 J ,所以M1 *in x =.时Mx)取得最小值专.5 .答案D命题意图 本题多查导致的几何意义.解析 因为/)是为函敷:,所以/(2) = -/( -2) =0,且«)在(2,0)和(-2,0)两点处的切纹斜率相等,当 .1 <0时

12、/ J 彳= -:,I: ,所以r(2) =r( -2)=+,所以/(C的图象在点2,0)处的 切线的方程是> -0=!" - 2),即:v -5? -2=0.6 .答案(:命勉意图本题考查等比故列的性质.基本M的计算.2 2 J解析 设等比数列M:的公叱为代>0),由已知条件呜限"'4 '解和.2, /二1.所以“,=2,所以“ =2* =256.7 .答案D命地意图 本题号杳三用函数的图象与性质.5解析 由图知/的最小正周期4=4(*等)=丁,所以3/ =2,因为点(L在/U)的图象上,所以 2sin(2x* + w)=2,所以。+学=2Zi

13、r +学(A e Z).乂因为I(I <所以。二° ,即夕=£,所以/(“)= 2sin( 2x +*卜所以A错误;因为/(皆)=2sin(2 乂6+*)=2sin?=后,所以B错误;令2工+*=Af(G w Z),则*岑-,(AgZ),即/的图象的对称中心为(竽一言,0)(人2) ,所以C错误;令2呵2"点卜 1 .则"f +言w24 + *w2Af +普(nZ),所以心一 £麟+三(人Z),所以不等式/注1的解集为 kF.kp + 卜A e Z),所以 D 正确.8 .答案A命题意图本迤考查二项式定理.解析 因为(八。)卜+力的展开式

14、中所有项的系数和为-64,所以(1 -)二二-64,所以 :2, 卜+的展开式通项为71=(;卢,.()二塌产力,所以展开式的常数项为C: -2C: = -25.9 .答案B>命题意图 本题考查抛物线的性质、余弦定理.解析 如图,在仞中J1PI =5,1*=2,|fMI =/17,由余弦定理得 <6乙4二( 八-普,所以侪3 =曙,所以4( 1,4),代人方程/ =2"">0),可得。=8.-4PT)一1-整10 .答案 A/命题意图 本题考查指数函数和对数函数的性质.j|解析 由条件可知2=2,(hl) 唯(丁1) =2,因为函数厂2。%在R上单调递增,

15、因此方程2 工=2有唯一实根,因此=1吗"-1),2。=-1,所以2-二"-1,因此“+ =3.11 .答案15命题意图 考杳仃线与阴的位置关系,距离和的位值.解析 由题意知,直线L过定点4 0,0),直线 m(索1)-> 3 =0过定点以1 ,3),且LU,即PA 1PH,所 PJII/MI2 + PHl = MB/ =10,所以(I/MI + IP«I)22(PAz + PB2) =20,当且仅当IP/1I = IP以时取等 号.所以IP川+ IP/N的最大值是26.12 .答案I)命践意图 本超考杳函数的小调性、最俏.,通过不等式恒成立求参数的取信范围

16、.解析 对任意5,叼w(。/,不等式头;於竽恒成立等价于方$小牛 .因为、三(0,。,所 以/U)=二二工+生昌4,当旦仅当.v=2时取等号,所以/H, =/(2) =4,即空上=4-当LON x xLA J."时,,(*)=/=/(4 + I ) >0,所以以工)在(0,1上单调递增,所以=g(e) =/,所以二、填空题:本题共4小邈,每小题5分,共20分.” .答案y命题意图 本通芍行不等式组表示的平面区域,线性目标函数的最值.-8 -解析 如图所示,作出不等式组表示的平面区域,平移直线32)=0.当经过点A时,H标函数二3-2y取得最大值.解方程组r3.r + t - 3

17、 = 0, 得I* + 3y + 3 = 0,3= 3x-2x14 .答案;命题意图 本题考在平面向家的坐标运算、数垃枳达货.解析 由条件得病二(m-1.2) .诧=(-*3),所以茄诧二(9-1,2)(一小.3) = - M +欣+6二冬.解 4得 m = -1".15 .答案-1命过意图本题考查双曲线的性质.解析 设.4(M .)1) Ha,) ,(与,为),则即十*2 =2如,力+ » =2九,4 -? = 1J;-2二1 ,两式相战得 oO(盯-町)(» +X2) = 5十寸也二),整理可得O言即止=学,同理得;二攀二攀因为""就&qu

18、ot;Bsc o司+卜儿” =-S ,所以+,=%, 4儿忧+ k0 )16 .答案肇77命题意图 本题唐便空间几何体的结构特征.解析 设正方形4"C的中心为。,析题可知1041 =反,设四棱锥P -八8的高为A,则 布+(历尸二(后):所以八二2.设球P被平面4/?(笫所微的圜的半径为,,则/ 十必二 (苧),可得,:竽如图所示球面与底面4/";的交线即图中圆0在正方形川内内 的部分,出二审可知为等边三角形国'所对圆心角为胃,则圆O在正方膨48切内的部分所对的例心用之和为2"-4全=/因此交线的总长度为rx萼=陪宣.三、解答题:共7。分.解答应写出文字说

19、明,证明过程或演算步寐.”,命题意图 本题考杳正弦定理、余弦定理的应用.解析(【)由余弦定理,原式化为业+乎=竺". n b c再由正弦定理可得驾+驾=”"=2, (2分)sin 4 sin n sin G又因为所2。+ «/。= I .Cg (O.ir),nJsin C = ,com C = (5 分)(11 )因为S。彳呢=/a限in C =2,所以,力=4J亍, (6分)因为a =同,所以a = 2抒.b = 2,(7分)由余弦定理得-os C = 20+ 4 - 2x26x2* 半=8. (9 分)所以。=2乃. (10分)IX.命题意图 本题考查等差数列

20、.等比数列的性质,分组法求数列的前n项和.解析(I )设1%1的公差为九十力的公比为因为为=5a=1。5 +45=185,解得4 = 3. (2分)所以* =5+3(-1) =3。+2. (3分)由勺“ =5得”=I,由"?片=1得& ,所以也 的公比夕二/,(5分)所以儿二/ (6分)(11)由(I )得".=(3+2) 乂表.所以 7c = 5x1 +8 x + 11 x-p- + + (3n +2) x所以=5x;+8x!+ll xj+ +(3+2) x5. (8分)Z4222两式相减得:兀=2*3+3xf .3x。+3xS-(3+2) x52*1= 2+3x

21、-(3/14.2) x士 i-V2=8-&.(10分)所以(12分)19 .命题意图 本通名行独立亦件的概率,随机变屈的分布列与数学期里.解析1 )由巡设知消的可能取值为10,5,2,-3, (1分)且 p(X = 10) =p(p 40.1) .P(X=5) = (1 -p)(p +0.1),P(,V = 2) =(l -p-0. 1) =“(0.9-p).P(X= -3) =(1 -P)(l I) =(1 -p)(0.9-/). 所以A'的分布列为:X-32510P ( I -p) (0. 9 -p)p(0. 9 -p)< I -p) (p - 0. 1) p(p 4

22、0. I)(4 分)所以 £(X> = -3(1 -p)(0.9-/>) +2x/A().9-p) +5x(1 -p)(p+(). 1) + 1() xP(P+0. 1) =13-2.2.因为£(X) =8.2.所以13p-2.2 = 8.2.解得p = 0.8, (6分)(II )设生产的4件甲产品中正品有件,则次品有4 “件,由题意知.4-(4-)Nll.则=3 或 =4. (8分)所以 P = C: x0. 83 x0. 2+0. 84 =0.819 2.故所求概率为0.8192. (12分)20 .命踵意图 本题考杳圆柱的结构特征,空间位置关系的也明以及空间向卡的应用.解析(I )如图,过点加作圆柱的阳线DE,连接花,BE. (1分)因为母线£与底面垂山,所以0£±8此 因为的是底面圆的直径,所以,4£J.8£, (2分)又A£n£>£ = £,所以8E

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论