二元一次方程组应用题_第1页
二元一次方程组应用题_第2页
二元一次方程组应用题_第3页
二元一次方程组应用题_第4页
二元一次方程组应用题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、鸡兔同笼问题1【例】今有鸡兔同笼,数头 35个,数腿94条,问鸡、兔各有多少只; 分析:两个相等关系:鸡头+兔头=总头数;鸡腿+兔腿=总腿数.二解:设鸡有X只,兔有y只.=35x =由题意可列万程组w解得w =94y =答:鸡有 只,兔有 只.1、野鸡和兔子共有 39只,它们的腿共有100条,求野鸡和兔子各有多少只.2、板凳和木马共有 33个,腿共有101条.板凳和木马各有多少个注:板凳 4条腿,木马3条腿3、某文艺团体为“希望工程募捐组织了一场义演.其中成人票每张8元,学生票每张5元,共售出1000张票,共筹得票款 6950元.问成人票与学生票各售出多少张分析:两个相等关系:;4、某校买了甲

2、、乙两种型号的彩电共 7台,花去人民币15900元.这两种型号的彩电的价格分别是3000元和1300元,问该校两种彩电各买了多少台?鸡兔同笼问题21、某校150名学生参加数学测试,平均每人 55分,其中及格的学生人均 77分,不及格的学生人均 47 分.及格、不及格的学生各有多少人2、一队敌军一队狗,两队并成一队走;脑袋共有八十个,数腿却有二百条;请君仔细算一算,多少敌 军多少狗3、现有大人、幼儿共 100人,大人一餐吃 4个面包,幼儿4人一餐吃一个面包,一餐刚好吃光100个面包,问大人、幼儿各有几人分配问题(1)【例】栖树群鸦,鸦树不知数;三只坐一棵,五只没去处;五只栖一棵,闲了一棵树;请你

3、列式算, ;鸦树各几何= 分析:两个等量关系:3 M树的棵数+ 5=乌鸦的只数; 5 M (树的棵数一1)=乌鸦的只数.: 解:设乌鸦有x只,树有y棵.!3M += xx =由题意可列方程组W解得七5 (_) =xy =答:乌鸦有 只,树有 丽"'1、某单位召开会议,安排参加会议人员住宿,假设每间宿舍住12人,便有34人没有住处;假设每间住 14人便多处4间宿舍没人住.求参加会议的人数和宿舍数.分析:两个相等关系: ;.2、将假设干只鸡放入假设干个笼子中,假设每个笼子放 4只,那么有1只鸡无笼可放;假设每个笼子放 5只鸡, 那么有1笼无鸡可放,试问有多少只鸡,多少个笼子3、用

4、一根绳子测水泥柱一周的尺寸,假设绳子绕水泥柱4周,那么绳子还多 3尺;假设绳子绕水泥柱 5周,那么绳子还少2尺,求绳子及水泥柱一周的长度.分配问题(2)1、一组学生用一条绳子测一块的长,量12次,还余80 m没有量,量14次,超出地段20 m,求绳长和地段长.2、在一条马路旁种树,每隔 3米种一棵,到头还剩 3棵树;每隔2.5米种一棵,到头还缺 77棵树.问 马路有多长树有多少棵“没人分6匹,但剩下5匹.3、有人在林中散步,听到几个强盗在商量怎样分抢来布匹,一名强盗说: 另一名强盗说:“每人分7匹,可又少8匹.问有几个强盗几匹布?4、现有一批物资运往三峡工地,由铁路装运,如果每节车皮装 50吨

5、,那么还缺2节车皮才能把全部物资运走,如果每节车皮多装 5吨,那么还可再装200吨其它物资,问原有多少物资,共有多少节车皮调配问题【例】甲乙隔河放牧羊,两人相互问数量;甲说得乙羊九只,我羊是你羊二倍;乙说得甲羊八只.两人;羊数正相当.请你帮助算一算,甲乙各放多少羊' 分析:两个等量关系:1甲羊数+ 9=2X: 解:设甲放羊x只,乙放羊y只.!x 9 = 2 y 一9由题意可列方程组y 8 = x - 8乙羊数一9; 2乙羊数+ 8=甲羊数一8x =解得:y =答:甲放羊 只,乙放羊 只.1、甲、乙两盒中各放着一些球,一共有 9个,如果从甲盒中拿出 5个放入乙盒,乙盒的球数是甲盒的2倍.

6、问甲、乙两盒中原来各放着多少个球2、某工厂第一车间人数比第二车间人数的一少30人,假设从第二车间调10人到第一车间,那么第一车间5 3的人数是第二车间人数 3,求各车间的人数.43、有一大群羊,其中一局部已上山,另一局部还在山下.如果山下的羊中有3只上了山,那么山下的羊1是整个羊群的1;如果从山上下来 3只羊,那么山上、山下的羊就一样多了.问原来山上、山下各有羊3多少只配套问题12个或螺母18个,应分配1个螺栓要配2个螺母.2螺母数=2倍的螺栓数.【例】某车间有28名工人,加工生产一种螺栓和螺母,每人每天生产螺栓 多少人生产螺栓,多少人生产螺母,才能使生产的螺栓和螺母刚好配套分析:两个等量关系

7、:1加工螺栓的人数+加工螺母的人数=28;解:设加工螺栓的有 X人,生产螺母的有 y人.解得:由题意可列方程组答:加工螺栓的有 人,生产螺母的有 人.1、一个工人一天能生产100值螺栓或150只螺帽,一只螺栓要与2只螺帽配套,假设有工人 42名,问怎 样分配,才能使每天生产的螺栓和螺帽刚好配套2、八年级A班同学50人,为参加学校举办的迎国庆文艺活动,做一批道具,每人每天平均做花18朵,面具16个,如果一个面具配两朵花,应分配多少学生做面具,多少学生做花,才能使面具和花刚好配套3、某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲零件12个或乙零件23个,应分配多少人生产甲零件, 多少

8、人生产乙零件, 才能使每天生产的甲零件和乙零件刚好配套每3个甲零件和2个乙零件配成一套年龄问题【例】学生问老师:“您今年多大 老师幽默地说:“我像你这样大时, 你才满周岁;你到我这样大时,"我已经37岁了.老师和学生的年龄各是多少= 分析:两个等量关系:1老师的年龄两人的年龄差= 1; 2学生的年龄+两人的年龄差= 37. 解:设老师的年龄为 X岁,学生的年龄为 y岁. fX =由题总引列方程组解得:y =答:老师的年龄为岁.1、甲对乙说:“当我的岁数是你现在的岁数时,你才4岁.乙对甲说:“当我的岁数是你现在的岁数时,你将61岁.问甲、乙各多少岁2、10年前,小兰妈妈的年龄是小兰年龄

9、的3倍;10年后,妈妈的年龄是小兰年龄的2倍,问小兰和妈妈现在的年龄各是多少岁3、仙鹤和乌龟是动物中的长寿星,一天鹤父、鹤女与龟祖、龟孙在聊天,它们发现鹤父的年龄是鹤女的2倍,龟祖的年龄是龟孙的 5倍,它们四位的年龄和的 300倍恰好是900岁.十年后,鹤父和鹤女之和的5倍,加上龟祖、龟孙的年龄也是900岁,试求它们分别是多少岁销售问题1 【例】某书店向学校推销甲、乙两种素质教育用书,如果原价买这两种书共需1760元,书店推销时甲;种书打了 8折,乙种书打了 7.5折,结果两种书共少要了400元.问甲、乙两种书原价各需多少钱二 分析:两个等量关系:1甲种书原价+乙种书原价=1760;:2甲种书

10、折后价+乙种书折后价=1760-4000解:设甲种书原价为 X元,乙种书原价为 y元.由题意可列出方程组 +=1760 =1760-400X x =解得: y =答:甲种书原价为 元,乙种书原价为 元.1、新华书店向某校推销甲、乙两种科普书,如以原价买这两种书乙种书书店按7.5折销售,结果这两种书共少要了200元,880元,甲种书书店按8折销售,问原来买这两种书各需要多少元?2、“五一黄金周,人民商场女装部推出“全部服装八折,男装部推出“全部服装八五折的优惠活动,某顾客买了一套女装和一套男装,优惠前需付700元,而她实际付款 580元.问男装、女装原价各是多少元3、某商场搞优惠促销,决定由顾客

11、抽奖确定折扣,某顾客购置甲、乙两种商品,分别抽到七折和九折, 共付款386元,这两种商品原销售价之和为500元,问这两种商品的原销售价分别为多少元【例】甲、乙两件服装的本钱共'按40%的利润定价.在销售时,;乙两件服装的本钱各是多少元' 分析:两个变量关系:(1)(2)500元,老板为获取利润,决定将甲服装按50%的利润定价,乙服装应顾客要求,两件服装均按甲服装的本钱+乙服装的本钱=甲服装的售价+乙服装的售价一9折出售.这样商店共获利 157元,求甲、500;500= 157.销售问题(2)解:设甲服装的本钱为 X元,乙服装的本钱为 y元.1r二 500解得:X由题总引列方程组

12、+-500 =157y答:甲服装的本钱为元,乙服装的本钱为元.X.1、华联商场购进甲、乙两种商品后,甲商品加价 50%,乙商品加价40%作为标价,后适逢元旦商场搞 促销活动,甲商品打八折销售,乙商品打八五折销售.某顾客购置甲、乙商品各一件,共付款538元,商场共盈利 88元,求甲、乙两种商品的进价.2、某商场购进甲、乙两种服装后,都加价40%标价出售.“春节期间商场搞优惠促销,决定将甲、乙两种服装分别把标价的八折和九折出售.某顾客购置甲、乙两种服装共付182元,两种服装的标价之和为210元,求这两种服装的进价和标价各是多少元3、某商场欲购甲、乙两种商品共50件,甲种商品每件进价为 35元,利润

13、率为20%;乙种商品进价为20元,利润率为15%,共获利278元,问甲、乙两种商品各购进多少件增长率问题1 上禹隹工|、八、-多总产值一总支出n/销售利润=总产值总支出销售利润率= u 一+100%总产值【例】某工厂去年的利润为 200万.今年总产值比去年增加了20%,总支出比去年减少了 10%,今年:的利润为780万元.去年的总产值、总支出各是多少万元?解:设去年的总产值为 x万元,总支出y万元.那么有一总产值万元总支出万元利河弟去年X丫200今年x =根据上表可列万程组 J 解得:i y 二答:去年的总产值为 1、某企业去年的总收入比总支出多500万元,今年的总收入比去年增加10%,总支出

14、节约15%,因此总收入比总支出多 800万元.求去年的总收入和总支出.2、某工厂第一季度生产甲、乙两种机器共480台,改进生产技术后,方案第二季度生产两种机器共544台,其中甲种机器产量要比第一季度增产10%,乙种机器产量要比第一季度增产20%.该厂第一季度生产甲、乙两种机器各多少台3、革命老区百色的某个芒果种植基地,去年结余为500万元,估计今年可结余 960万元,并且今年的收入比去年高15%,支出比去年低10%,求去年的收入和支出各是多少万元增长率问题21、某校方案向灾区捐赠图书3500册,实际共捐了 4125册,其中初中生比原方案多捐了20%,高中生捐了原方案的115%,问该校初、高中生

15、实际各捐赠图书多少册解:设初中生实际捐了 X册,高中生实际捐了 y册.那么有初中生捐书册高中生捐书册共捐书册实际捐书Xy5125方案捐书3500XX x =根据上表可列方程组 解得: y )答:设初中生实际捐了 册,高中生实际捐了 册.2、某工厂去年的总产值比总支出多500万元,而今年方案的总产值比总支出多950万元,今年计划总产值比去年增加 15%,而方案总支出比去年减少 10%,求今年方案的总产值和总支出各为多少元.储蓄问题【例】小明以两种方式储蓄了压岁钱2000元,其中一种是年利率为2.25%的教育储蓄,另一种是年利;率为3.06%的一年期定期存款,一年后共得利息45.99元,求这两种储

16、蓄各存了多少钱; 分析:两个等量关系:(1)两种储蓄共有2000元;(2)教育储蓄的利息+定期存款的税后利息=42.75元.!解:设存一年教育储蓄的钱为X元,存一年定期存款的钱为y元.:X y =2000x=由题意可列方程组国、解得W12.25 x 3.061 -20y =45.99y=答:存一年教育储蓄的钱为 元,存一年定期存款的钱为 元.1、某储户存入银行甲、乙两种利息的存款,共计 2万元,甲种存款的年利率是 3%,乙种存款的年利率是1.5%,不计利息税,该储户一年共得利息525元,求甲、乙两种存款各是多少万元?2、小明以两种方式共储蓄了3000元教育储蓄,一种的年利率为 2.25%,另一

17、种的年利率为 3.06%,年后本息和为3079.65元,求每种存款各为多少元3、王凯以两种方式分别储蓄了2000元和1000元,一年后全部取出,扣除利息税后,可得利息43.9元,这两种储蓄年利率的和为3.24% ,问这两种储蓄的年利率各是百分之几数字问题(1 )【例】一个两位数,十位上的数字比个位上的数字小1,十位与个位上的数字之和是这个两位数的.5:求这个两位数.I1分析:两个等量关系:(1)十位数字=个位数字-1; (2)十位数字十个位数字=这个两位数的一.,5 解:设十位数字为 x,个位数字为y.-1x二由题意可列方程组 J 1解得:$x + y = (10x + y )y =答:这个两

18、位数为.1、一个两位数,十位上的数字是个位上的数字的3倍,将个位上的数字与十位上的数字对调后所得的两位数比原来的两位数小 18,求这个两位数.2、有一个两位数,个位上的数比十位上的数大5.如果把两个数字的位置对换,那么所得的新数与原数的和是143,求这个两位数.7,如果这个两位数加 45,那么恰好成为个位数字与十位3、一个两位数的十位数字与个位数字的和为 数字对调后所成的两位数,求这个两位数.4、有一个两位数,其值等于十位数字与个位数字之和的4倍,其十位数字比个位数字小 2,求这个两位数.数字问题(2)一【例】两个两位数的和是 68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较

19、大:的两位数的左边写上较小的两位数,也得到一个四位数.前一个四位数比后一个四位数大2178.:求这两个两位数.;分析:设较大的两位数为 X,较小的两位数为 y oj 在较大的两位数的右边接着写较小的两位数,得到一个四位可表示为 ; 在较大的两位数的左边写上较小的两位数,得到一个四位数可表示为 .'解:设较大的两位数为 x,较小的两位数为 yX1 x =由题意可列方程组 i解得:i y 二答:较大的两位数为 ,较小的两位数为 .1、两个两位数的和是 85,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.前一个四位数比后一个四

20、位数大 两个两位数.1287.求这2、一个三位数和一个两位数的差为225,在三位数的左边写这个两位数,得到一个五位数,在三位数的右边写上这个两位数,也得到一个五位数.前面的五位数比后面的五位数大 和两位数.225,求这个三位数3、有一个三位数,现将最左边的数字移到最右边,那么比原来的数小45;又百位数字的 9倍比由十位数字和个位数字组成的两位数小3,试求原来的三位数.相遇问题我们经常会遇到:甲、乙相向而行,途中相遇的行程问题,这类应用题中存在下面的等量关系: 1甲走的路程乙走的路程甲走的路程+乙走的路程=总路程?不【例】甲、乙两人分别从 A、B两地相向而行,甲的速度是乙的速度的2倍,如果A、B

21、两地相距90.千米,同时出发经过 2小时两人相遇,求甲、乙两人的速度.;分析:两个等量关系:1甲的速度=2X乙的速度;2甲走的路程+乙走的路程= 90千米;解:设甲的速度为x千米/小时,乙的速度为 y千米/小时由题意可列方程组x =解得y 二答:甲的速度为 千米/小时,乙的速度为 千米/小时.1、甲、乙两人在一条长 400米的环形跑道上跑步,甲的速度是6米/秒,乙的速度是 4米/秒.两人同时同地反向跑步,经过 后两人第一次相遇.2、甲的速度是5 km/h,乙的速度是6 km/h,甲、乙两人同时出发相向而行,7 h后相遇,那么两地的距离为 km.3、甲、乙两人骑自行车同时从相距 65千米的两地相

22、向而行,2小时后相遇,假设甲比乙每小时多骑 2.5 千米,求甲、乙两人的速度.4、A、B两城相距720 km,普快列车从 A城出发120 km后,特快列车从 B城开往A城,6 h后两车2相遇.假设普快列车的速度是特快列车速度的2 ,求普快列车和特快列车的速度.3追击问题我们还会遇到另一类行程应用题,即同时不同地的追击问题,这类问题存在下面的等量关系:两者间的距离 先行者走的路程追击者走的路程-先行者的路程=两者原来相距的路程 追击者走的路程【例】甲、乙两人相距 8 km,二人同时出发,同向而行,甲2.5 h可追上乙;相向而行,1 h相遇,:人的速度各是多少- 分析:两个等量关系:(1)同向而行时,甲走的路程一乙走的路程=8 km:(2)相向而行时,甲走的路程+乙走的路程=8 km, 解:设甲的速度为 x km/h,乙的速度为 y km/h o1lx =由题意可列方程组 解得 y 二答:甲的速度为 km/h ,乙的速度为 km/h.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论