卧式单面多轴钻孔组合机床动力滑台的液压系统的课程设计._第1页
卧式单面多轴钻孔组合机床动力滑台的液压系统的课程设计._第2页
卧式单面多轴钻孔组合机床动力滑台的液压系统的课程设计._第3页
卧式单面多轴钻孔组合机床动力滑台的液压系统的课程设计._第4页
卧式单面多轴钻孔组合机床动力滑台的液压系统的课程设计._第5页
免费预览已结束,剩余13页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、湖南工业大学课程设计资料袋机械工程学院学院(系、部) 2013 学14 学年第 1 学期课程名称液压与气压传动指导教师罗中平职称教授学生姓名曹炎斌专业班级机工1102 班学号11495200131题目组合机床动力滑台液压系统设计成 绩起止日期 2013 年12月19日1014 年 1月 02日序号材料名称资料数量备注1课程设计任务书2课程设计说明书3课程设计图纸张456湖南工业大学课程设计任务书20132014学年第1学期机械工程学院(系、部) 机电一体化 专业 1102 班级课程名称:液压与气动设计题目:组合机床动力滑台液压系统设计1完成期限:自 2013 年12 月30 日至 2014 年

2、1 月3 日共1周内 容 及 任 务一、设计的主要技术参数试为某厂汽缸加工自动线上设计一台卧式单面多轴钻孔组合机床动力滑台液压系统。机床后主轴16根,钻14个()13.9mm的孔,2个e 8.5mm的孔。1)机床要求的工作循环是:快速接近工件,然后以工作速度钻孔,加工完毕后快速退回原始位置,最后自动停止。 动力滑台采用平导轨。2)机床的工作参数如下:假里运动部件重 G=9800N,切削力Fw=30500N ;快进快退速度 v1=v3=5.5m/min ;动 力滑台米用平导轨,静、动摩擦因数 内=0.2,国=0.1 ;往复运动的加速、减速时间为 0.2s; 快进行程L1=100mm ;工进行程L

3、2=50mm ,执行兀件征用液压缸, 试设计计算其液压系统。3)机床自动化要求:要求系统采用电液结合,实现自动循环,速度换接无冲击,且速度要稳定,能承" 定量的反向负荷。二、设计任务完成如卜,作:1)按机床要求设计液压系统,绘出液压系统图。2)确定滑台液压缸的结构参数。3)计算系统各参数,列出电磁铁动作顺序表。4)选择液压元件型号,列出元件明细表。5)验算液压系统性能。三、设计工作量1)撰写课程设计计算说明书一份,不少于三千字。要求计算说明书计算准确、文字通 顺、编排规范。2)绘制液压系统原理图图2张、要求图面布置合理、正确清晰、符合相关标准及有 关规定。进起止日期工作内容度2013

4、.12.30讲授设计的一般步骤和方法、设计的要求、布置设计题目;安2013.12.31-2014.1.2学生进行设计;排2014.1.3教师验收,学生修改打印设计报告。答辩1许福玲 陈尧明主编,液压与气压传动,机械工业出版社,2007年6月2章宏甲等编,液压与气压传动,机械工业出版社, 2004年2月。3何存兴主编,液压传动与气压传动,华中科技大学出版社,2002年1月。4张群生主编,液压与气压传动,机械工业出版社,2001年8月。5姜继海等主编,液压与气压传动,高等教育出版社,2002年1月。主 要 参 考 资 料6左建民主编,液压与气压传动,机械工业出版社,1995年10月。7成大先.机械

5、设计手册(单行本).液压传动.北京:化学工业出版社,2001.8杨培元,朱福元.液压系统设计简明手册.北京:机械工业出版社,1999.9刘忠伟主编.液压与气压传动,北京:化学工业出版社2011.1指导教师(签字):系(教研室)主任(签字):HUNAN UNIVERSITV OFTGCHNOLOGY(课程设计名称)设计说明书起止日期:2013年12月19日至2014年1月2日学 生 姓 名曹炎斌班级机工1102学号11495200131成绩指导教师(签字)机械工程学学院(部)2013年12 月30日液压传动课程设计指导书湖南工业大学机械工程学院2013 年 12 月第一章明确液压系统的设计要求要

6、求设计一台卧式单面多轴钻孔组合机床动力滑台的液压系统。设计要求驱动动力滑台实现“快进一工进一快退一停止”的工作循环。液压系统的主要参 数与性能要求如下:机床上有主轴16个,加工 13.9 mm的孔14个,Q8.5mm的孔2个。刀具材料为高速钢,工件材料为铸铁,硬度为 240HBS,运动部件总 质量G=9800N,快进、快退的速度 vi= v3=5.5 m/min,快进行程长度li=100mm, 工进行程长度12=50 mm,往复运动的加速,减速时间为0.2s,动力滑台采用平导 轨,其静摩擦系数fs=0.2,动摩+«系数fd=0.1,液压系统中的执行元件使用液压 缸。第二章负载与运动分

7、析负载分析中,暂不考虑回油腔的背压力,液压缸的密封装置产生的摩擦阻力在机械效率 中加以考虑。因工作部件是卧式放置,重力的水平分力为零,这样需要考虑的力有:夹紧力, 导轨摩擦力,惯性力。在对液压系统进行工况分析时,本设计实例只考虑组合机床动力滑台所受到的工作负 载、惯性负载和机械摩擦阻力负载,其他负载可忽略。(1)切削负载Fw 30500N工作负载是在工作过程中由于机器特定的工作情况而产生的负载,对于金属切削机床 液压系统来说,沿液压缸轴线方向的切削力即为工作负载。切削负载(确定切削负载应具备机械切削加工方面的知识)用高速钢钻头(单个)钻铸铁孔时的轴向切削力 Ft(单位为N)为Ft 25.5Ds

8、0.8(HBS)062(81)式中:D钻头直径,单位为 mm;s每转进给量,单位为 mm /r;HBS 铸件硬度。根据组合机床加工特点,钻孔时主轴转速n和每转进给量s按 组合机床设计手册”取:对(j)13.9mm 的孔:n1=360r/min , s l=0.147mm/r;对(j)8.5mm 的孔:n2=550r/min, s 2=0.096mm/r;所以,系统总的切削负载 Ft为:Fw 14 25.5 13.9 0.1470.8 2400.6 2 25.5 9.0 0.096°8 2400.6 30500 N 令 Fw=Fq=30500N2 .惯性负载往复运动的加速,减速时间为0

9、.2s ,所以取 t为0.2SFm m G 10005.5458Nt g t60 0.23 .阻力负载机床工作部件对动力滑台导轨的法向力为:Fn G 9800N静摩擦阻力:Ftffsfn 0.2 9800 1960N动摩擦阻力:Ffd fdFn 0.1 9800 980N 加速负载:FL Fnfd m v/ t 1438N如果忽略切削力引起的颠覆力矩对导轨摩擦力的影响,并设液压缸的机械效率w =0.9 ,根据上述负载力计算结果,可得出液压缸在各个工况下所受到的负载力和液压缸所需推力情况 由此得出液压缸在各工作阶段的负载如表10 1所列。表8-1液压缸在各工作阶段的负载R工况负载组成负载值f工况

10、负载组成负载值f启动FlFn fs1960快退FlFnfd980快进FlFn fd980停止F Ffd Fm522工进FlFn fdFq31480注:在负载分析中,没有考虑动力滑台上倾翻力矩的作用按表8-1数值绘制的动力滑台负载图如图8-1(a)所示。第三章 负载图和速度图的绘制根据工作循环(总行程L1+L2=150mm 工进速度丫2r眄2?3"二山仙市由绘制动力滑台速 度图(如图8-1(b)所示。快进、工进和快退的时间可由下式分析求出。L 0 1快进t1 -1 60 1.09sv15.5l 20.05 “ LC C工进t260 56.6sV20.053快退t3L 015 60 1.

11、63sv35.5根据上述已知数据绘制组合机床动力滑台液压系统绘制负载图(F-t )如图1(b),速度循环图如图1 (c)所示。初选液压缸工作压力所设计的动力滑台在工进时负载最大,在其它工况负载都不太高,参考表1和表2,初选液压缸的工作压力 p1=4MPa快进»工一.*快退停止口醐旧55组合机床液压缸的负载图和速度图图1速度负载循环图a)工作循环图b )负载速度图c)负载速度图第四章确定液压系统主要参数4.1确定液压缸工作压力由表2和表3可知,组合机床液压系统在最大负载约为40000N时宜取5MP。表2按负载选择工作压力</KN<5510102020303050>50

12、工作压力/MPa< 0.811.522.533445>5表3各种机械常用的系统工作压力机械类型机床农业机械小型工程机械建筑机械液压凿岩机液压机大中型挖掘机 重型机械起重运输机械磨床组合机床龙门 刨床拉床工作压力/Mpa0.8235P 28P 810101820324.2计算液压缸主要结构参数由于工作进给速度与快速运动速度差别较大,且快进、快退速度要求相等,从降低总流量需求考虑,应确定采用单杆双作用液压缸的差动连接方式。通常利用差动液压缸活塞杆较粗、可以在活塞杆中设置通油孔的有利条件,最好采用活塞杆固定, 而液压缸缸体随滑台运动的常用典型安装形式。这种情况下,应把液压缸设计成无杆腔工

13、作面积A是有杆腔工作面积A2两倍的形式,即活塞杆直径d与缸筒直径D呈d = 0.707 D的关系。工进过程中,当孔被钻通时,由于负载突然消失,液压缸有可能会发生前冲的现象, 因此液压缸的回油腔应设置一定的背压 (通过设置背压阀的方式),选取此背压值为 S=0.8MPa。快进时液压缸虽然作差动连接(即有杆腔与无杆腔均与液压泵的来油连接),但连接管路中不可避免地存在着压降 p ,且有杆腔的压力必须大于无杆腔,估算时取 p 0.5MPa。 快退时回油腔中也是有背压的,这时选取被压值p2=0.6MPa。工进时液压缸的推力计算公式为F/ m A1P1 A2P2A1P1 (A/2)P2,式中:F负载力m

14、液压缸机械效率A1 液压缸无杆腔的有效作用面积A2液压缸有杆腔的有效作用面积 pi 液压缸无杆腔压力P2液压有无杆腔压力43603.333x10-6 =0.0947899 mm因此,根据已知参数,液压缸无杆腔的有效作用面积可计算为A1=FmM2液压缸缸筒直径为D =、,4A1/ =109.89mm由于有前述差动液压缸缸筒和活塞杆直径之间的关系,d = 0.707 D,因此活塞杆直径为d=0.707 109.89=77.69mm ,根据GB/T2348 1993对液压缸缸筒内径尺寸和液压缸活塞杆外 径尺寸的规定,圆整后取液压缸缸筒直径为D=110mm,活塞杆直径为 d=80mm。此时液压缸两腔的

15、实际有效面积分别为:A1= D2/4=94.795x10-4m2A2= (D2-d2)/4=44.555 x10-4m2工作台在快进过程中,液压缸采用差动连接,此时系统所需要的流量为 q 快进(A A2) V127.63工作台在快退过程中所需要的流量为q快退A2v3 24.50L / min工作台在工进过程中所需要的流量为q 工进Av20.502L/min根据上述液压缸直径及流量计算结果,进一步计算液压缸在各个工作阶段中的压力、流量和功率值,如表 4所示。表8-2液压缸在不同工作阶段的压力、流量和功率值工况负载Fl/N回油腔 压力P2/MPa进油腔 压力P1/MPa输入理 论流量q/(L/s)

16、输入功 率P/kW计算式快迸 (差 动)启动196001.17-P1Fl/ mA2 P / A1AqA1A2 v1pPq加速980P1P1.005-恒速9800.8040.54850.441工进314800.64.880.00840.041P1Fl/ mP2A2 / AqAv2p P1q快 退启动196000.38-P1Fl/ mP2A2 / AqA2v3pPq加速9800.60.573-恒速9800.4240.4860.205并据表4可绘制出液压缸的工况图,如图 2所示。第五章液压系统方案设计根据组合机床液压系统的设计任务和工况分析,所设计机床对调速范围、低速稳定性有一定要求,因此速度控制是

17、该机床要解决的主要问题。速度的换接、稳定性和调节是该机床液压系统设计的核心。此外,与所有液压系统的设计要求一样,该组合机床液压系统应尽可能结构简单,成本低,节约能源,工作可靠。5.1 选用执行元件因系统运动循环要求正向快进和工进,反向快退,且快进,快退速度相等,因此选用单活塞杆液压缸,快进时差动连接,无杆腔面积Ai等于有杆腔面积 A2的两倍。5.2 速度控制回路的选择工况图表明,所设计组合机床液压系统在整个工作循环过程中所需要的功率较小,系 统的效率和发热问题并不突出,因此考虑采用节流调速回路即可。虽然节流调速回路效率低, 但适合于小功率场合,而且结构简单、成本低。该机床的进给运动要求有较好的

18、低速稳定性 和速度-负载特性,因此有三种速度控制方案可以选择,即进口节流调速、出口节流调速、 限压式变量泵加调速阀的容积节流调速。钻链加工属于连续切削加工,加工过程中切削力变化不大,因此钻削过程中负载变化 不大,采用节流阀的节流调速回路即可。但由于在钻头钻入铸件表面及孔被钻通时的瞬间, 存在负载突变的可能,因此考虑在工作进给过程中采用具有压差补偿的进口调速阀的调速方 式,且在回油路上设置背压阀。由于选定了节流调速方案, 所以油路采用开式循环回路,以提高散热效率,防止油液温升过高。从工况图中可以清楚地看到, 在这个液压系统的工作循环内,液压要求油源交替地提供低压大流量和高压小流量的油液。而快进快

19、退所需的时间t1和工进所需的时间t2行tL=20因此从提高系统效率、节省能量角度来看,如果选用单个定量泵作为整个系有t t1统的油源,液压系统会长时间处于大流量溢流状态,从而造成能量的大量损失,这样的设计显然是不合理的。如果采用一个大流量定量泵和一个小流量定量泵双泵串联的供油方式,由双联泵组成的油源在工进和快进过程中所输出的流量是不同的,此时液压系统在整个工作循环过程中所需要消耗的功率估大,除采用双联泵作为油源外,也可选用限压式变量泵作油源。但限压式变量泵结构复杂、成本高,且流量突变时液压冲击较大,工作平稳性差,最后确定选用双联液压泵供油方案,有利于降低能耗和生产成本,如图 3所示。图3双泵供

20、油油源5.3 选择快速运动和换向回路根据本设计的运动方式和要求,采用差动连接与双泵供油两种快速运动回路来实现快速运动。即快进时,由大小泵同时供油,液压缸实现差动连接。本设计采用二位二通电磁阀的速度换接回路,控制由快进转为工进。与采用行程阀相比,电磁阀可直接安装在液压站上,由工作台的行程开关控制,管路较简单,行程大小也容易调整,另外采用液控顺序阀与单向阀来切断差动油路。因此速度换接回路为行程与压力联合控制形式。5.4 速度换接回路的选择所设计多轴钻床液压系统对换向平稳性的要求不高,流量不大,压力不高,所以选用价格较低的电磁换向阀控制换向回路即可。为便于实现差动连接,选用三位五通电磁换向阀。为了调

21、整方便和便于增设液压夹紧支路,应考虑选用Y型中位机能。由前述计算可知,当工作台从快进转为工进时,进入液压缸的流量由0.5485 L/S 降0.0084 L/S ,可选二位二通行程换向阀来进行速度换接,以减少速度换接过程中的液压冲击,如图4所示。由于工作压力较低,控制阀均用普通滑阀式结构即可。由工进转为快退时,在 回路上并联了一个单向阀以实现速度换接。为了控制轴向加工尺寸, 提高换向位置精度,采用死挡块加压力继电器的行程终点转换控制。图4换向和速度切换回路的选择参考同类组合机床,选用双作用叶片泵双泵供油,调速阀进油节流阀调速的开式回路, 溢流阀做定压阀。为了换速以及液压缸快退时运动的平稳性,回油

22、路上设置背压阀,初定背压值 Pb=0.8MPa。5.5 组成液压系统原理图选定调速方案和液压基本回路后,再增添一些必要的元件和配置一些辅助性油路,如控制油路、润滑油路、 测压油路等,并对回路进行归并和整理,就可将液压回路合成为液压系统,即组成如图5所示的液压系统图。1一双联叶片液压泵;2三位五通电液阔;3行程阀;4一调速阀;6单向阀;7顺序阀;8背压阀;9溢流阀;10一单向阀;12一压力表接点;13单向阀;14一压力继电器。5一单向阀;11 过滤器;系统图的原理1 .快进快进如图所示,按下启动按钮,电磁铁 1YA通电,由泵输出地压力油经 2三位五通换 向阀的左侧,这时的主油路为:进油路:泵 一

23、向阀10一三位五通换向阀 2 (1YA得电)一行程阀3一液压缸左腔。回油路:液压缸右腔一二位五通换向阀2 (1YA得电)一单向阀6一行程阀3一液压缸左腔。由此形成液压缸两腔连通,实现差动快进,由于快进负载压力小,系统压力低,变量泵输出最大流量。2 .工进减速终了时,挡块还是压下,行程开关使3YA通电,二位二通换向阀将通路切断,这时油必须经调速阀4和15才能进入液压缸左腔,回油路和减速回油完全相同,此时变量泵输 出地流量自动与工进调速阀15的开口相适应,故进给量大小由调速阀 15调节,其主油路为:进油路:泵 一 向阀10一三位五通换向阀 2 11YA得电)一调速阀 4一调速阀15一液压 缸左腔。

24、回油路:液压缸右腔一二位五通换向阀2一背压阀8一液控顺序阀7一油箱。3 .快退滑台停留时间结束后,时间继电器发出信号,使电磁铁1YA 3YA断电,2YA通电,这时三位五通换向阀 2接通右位,因滑台返回时的负载小,系统压力下降,变量泵输出流量 又自动恢复到最大,滑快速退回,其主油路为:进油路:泵 一向阀10一三位五通换向阀 2 (2YA得电)一液压缸右腔。回油路:液压缸左腔一单向阀5一三位五通换向阀 2 (右位)一油箱。4 .原位停止当滑台退回到原位时,挡块压下原位行程开关,发出信号,使 2YA断电,换向阀处于中 位,液压两腔油路封闭,滑台停止运动。这时液压泵输出的油液经换向 2直接回油箱,泵在

25、 低压下卸荷。第六章液压元件的选择6.1确定液压泵的规格和电动机功率(1)计算液压泵的最大工作压力由于本设计采用双泵供油方式,根据液压系统的工况图,大流量液压泵只需在快进和 快退阶段向液压缸供油,因此大流量泵工作压力较低。小流量液压泵在快速运动和工进时都 向液压缸供油,而液压缸在工进时工作压力最大,因此对大流量液压泵和小流量液压泵的工作压力分别进行计算。根据液压泵的最大工作压力计算方法,液压泵的最大工作压力可表示为液压缸最大工 作压力与液压泵到液压缸之间压力损失之和。对于调速阀进口节流调速回路, 选取进油路上的总压力损失p 0.8MPa,同时考虑到压力继电器的可靠动作要求压力继电器动作压力与最

26、大工作压力的压差为0.5MPa,则小流量泵的最高工作压力可估算为Bi4.88 0.8 0.5 MPa 6.18MPa大流量泵只在快进和快退时向液压缸供油,图4表明,快退时液压缸中的工作压力比快进时大,如取进油路上的压力损失为0.5MPa,则大流量泵的最高工作压力为:Pp20.47 0.5 MPa 0.97MPa(2)计算总流量表3表明,在整个工作循环过程中, 液压油源应向液压缸提供的最大流量出现在快进工作阶段,为0.5485 L/S,若整个回路中总的泄漏量按液压缸输入流量的10%计算,则液压油源所需提供的总流量为:qp 1.1 0.5485 0.6034L/s =36.2L/min工作进给时,

27、液压缸所需流量约为0.0084L/S,但由于要考虑溢流阀的最小稳定溢流量0.05 L/s ,故小流量泵的供油量最少应为0.0584L/S 。据据以上液压油源最大工作压力和总流量的计算数值,因此选取PV2R12 12/32型双联叶片泵,其中小泵的排量为12mL/r,大泵的排量为32mL/r ,若取液压泵的容积效率 v=0.9 , 则当泵的转速np=940r/min时,液压泵的实际输出流量为qp 12 32 960 0.91000 L min 37.224L min由于液压缸在快退时输入功率最大,这时液压泵工作压力为0.97MPa、流量为37.224r/min。取泵的总效率0.75,则液压泵驱动电

28、动机所需的功率为:pP .Ppqp 0.97 37.224kw 0.81kw60 0.75根据上述功率计算数据,此系统选取Y100L-6型电动机,其额定功率 Pn 1.5kW ,额定转速 nn 960r/min。6.2确定其它元件及辅件(1)确定阀类元件及辅件根据系统的最高工作压力和通过各阀类元件及辅件的实际流量,查阅产品样本,选出的阀类元件和辅件规格如表6所列。表6液压元件规格及型号序号元件名称通过的最 大流量 q/L/min规格型号额定流量 qn/L/min额定压力Pn/MPa额定压降?Pn/MPa1双联叶片泵一PV2R12-12/323716/14一2三位五通电 液换向阀5035DYF3Y- E10B8016< 0.53行程阀60AXQF- E10B6316&

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论