




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第3讲平面向量的数量积1.两个非零向量夹角的概念-7 -已知非零向量a与b,作OA = a , OB = b , 则 AO B=9(0W ewn)叫 a 与 b 的a与b,它们的夹角是 0,则数量特别提醒:向量a与向量b要同起点。2.平面向量数量积(内积)的定义:已知两个非零向量 | a| b |cos _叫a与b的数量积,记作 a b,即有a b = | a| b |cos特别提醒:(1)(0< 0 w n ).并规定0与任何向量的数量积为 0(2) 两个向量的数量积的性质:1)2)3)4)b为两个非零向量,a e =| a|cos当a与b同向时,a b特别的a a = |cose是与
2、b同向的单位向量,a| b | ;当 a与 b 反向时,a b =| a| b |.a|2或| a |= ja aa| b |5)| a b | w |aI 论也 A方向上的投影Bi投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当 =0时投影为|b| ;当=180时投影为|b|*4. 平面向量数量积的运算律交换律:_ a - b = b - a数乘结合律:(A a) b =几(a b ) = a ( z b )分配律:(a + b ) c = a Q + b c5. 平面两向量数量积的坐标表示已知两个非零向量(x1,y1),I 斗Ib单位向量,那么
3、a = xf + y1 j ,b =(X2, y2),设i是X轴上的单位向量,j是y轴上的44-= X2i +y2j 所以 a b = XiX yi y26. 平面内两点间的距离公式如果表示向量a的有向线段的起点和终点的坐标分别为(Xj yj、(x2, y2),那么:|a|= J(X1 X2)2 +(% y2)27.向量垂直的判定:设 a -(xyj ,b =(X2,y2),则 a 丄 b-XiX2 + yy =08.两向量夹角的余弦(0 < 0 <兀)cos 日=a b重问题1:两个向量的数量积是一个实数难点突破向量加、减、数乘运算的运算结果是向量。例:规定,a 0=0 a =0
4、(不是零向量0,注意与入0 = 0(入 R)区别)(2)向量数量积与实数相关概念的区别冋题2:表示方法的区别数量积的记号是a "b,不能写成axb,也不能写成ab(所以有时把数量积称为“点乘”记号a X b另外有定义,称为“叉乘”).问题3:相关概念及运算的区别若a、b为实数,且 a b=0,则有a=0或b=0,但a b =0却不能得出a = 0或b =0 .因 为只要a丄b就有a b =0,而不必a = 0或b = 0 .热点考点题型探析考点一:平面向量数量积的运算题型1.求数量积、求模、求夹角【例1已知a(3)(2a-lb (a+3b) ; (4) :【例1已知a =2,b| =
5、3,a与b的夹角为120o,求(1a b;(2)a -b;解析:彳斗 4斗.1(1 a b=|a blcosG0 =2咒3"M=3(2)a2 -b2 =诃幷_舟2=4一9 一5例2解析:已知a44 彳24 呻2(2%-b) (a 椁b) = 2a + 5a b-3b呻2'|bcos120o3|b|2右34 _I耳2 厂+b) =va + 2a b + b =74-6+9 =" 4 <4 _, 亠“=2 a +5$ 厂8-3 a +b =1, b =j2,且a-b与a垂直,求a与b的夹角。设a与b的夹角为日b与a垂直爲一鳥=0即a4I 4f a 一4 442 |
6、4/. a b = a = a2=1:濮0o,80oC 兀. d =4/. a与b的夹角为题型2。利用数量积解决垂直问题例3若非零向量:、P满足a +J.s-P,证明:a丄P解题思路:只须证明a m =0。证明由:M率胡得:展开得JR。,故:M解析:申审二(:+?)2 =(:耳2例 4在 ABC中,AB=(2, 3) , AC =(1, k),且 ABC的一个内角为直角,求k值*3解析:当 A = 90 时,AB ”AC = 0 , 2X 1 +3 x k = 0 k =-2当 B = 90 时 AB BC = 0 ,BC = AC -AB = (1 -2, k3) = ( -1, k3) 2
7、X (-1) +3 X (k3) = 0 k =113当 C= 90 対,AC ”BC = 0 ,1 + k( k3) = 0.k =42届高三上学期第三次月考【新题导练】1.(广东省普宁市城东中学 2011已知向量 a =(1, 1) , b =(2,n),若 I a + b 1= a ”b ,则n=(A. - 3 B . -1 C答案:D解析:j9 + (1 + n)2 =2 + n 解得 n=32.执信中学2009-2010学年度高三数学试卷知 a, b, c为 ABC的三个内角A, B,C边, 向量m =(虑-1),n = (cos A, sin A).若 m 丄 n,且 acs Bc
8、= C,则角A, B的大小分别为(A.B.2 n n5 36答案:解析:m丄n可得mn = 0即J3cos A- sin A = 0所以角兀A=3兀-C可得B =6范围是(兀A. 0,6B.切解析:由关于x的方程6X2 +1 a | X + a 七=0有实根,得:| a | -4a 七 > 0D.2兀且acosB +bcosA =csinC及 B =3考点2利用数量积处理夹角的范围题型1 :求夹角范围例5已知| a |=2 | b | H 0 ,且关于x的方程x2 + |a|x+a b = 0有实根,则a与b的夹角的取值4 4色,又 |a|=2|b|H0,|a|b|1彳4|a|2"os 处 177 -1 a| 2''【新题导练】1兀S, -.答案B.3设非零向量a = (x,2x ), b=( 3x,2 ),且a , b的夹角为钝角,求 x的取值范围解析广a,b 的夹角为钝角,a b =x (3x)+2x *2 = 3x2+4xc01|:|2.设向量為的夹角为0,则cos e十4由(1),(2)得x的范围是/OC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 通信原理简明教程(第2版)课件 第8章 同步原理
- 2025年河北省定州市辅警招聘考试试题题库附答案详解(完整版)
- 2025年Z世代消费习惯研究:新消费品牌如何提升用户忠诚度报告
- 2025年K2学校STEM课程实施与教师教学反思研究报告
- 膀胱肿瘤整块切除术手术技术2025
- 初中数学九年级下册统编教案 6.5相似三角形的性质(第1课时)
- 2025届高考物理大一轮复习课件 第九章 第49课时 专题强化:带电粒子在电场中的力电综合问题
- 抗炎缓解治疗药物
- 2025年父亲节小学生国旗下讲话稿-父爱如山温暖相伴
- 物流司机培训试题及答案
- 中国丝绸简述ppt课件
- 苏轼《浣溪沙》优秀课件
- 塑料包装袋购销合同
- 生产良率系统统计表
- 代理机构服务质量考核评价表
- 浅谈打击乐器在小学低段音乐课堂中的运用
- 2018年泸州市生物中考试题含答案
- S7、S9、S11系列变压器损耗表
- 消防电气检验批质量验收记录表
- 品控员作业指导书
- 医疗器械质量手册含程序文件
评论
0/150
提交评论