PBAT的共混改性综述(共7页)_第1页
PBAT的共混改性综述(共7页)_第2页
PBAT的共混改性综述(共7页)_第3页
PBAT的共混改性综述(共7页)_第4页
PBAT的共混改性综述(共7页)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上PBAT的共混改性综述聚己二酸对苯二甲酸丁二酯(PBAT)是一种新型的完全生物降解脂肪-芳香族共聚酯。与其它聚合物进行共混改性是改善PBAT基材综合性能的有效手段,同时也是降低该材料价格的重要方式。为拓展PBAT材料的应用范围,扩大PBAT的市场需求,有必要利用多种方式对其进行共混改性。1. PBAT与可降解聚合物共混改性1.1 PBAT与聚乳酸(PLA)共混PLA是一种脂肪族聚酯,其合成原料乳酸可完全由生物法发酵制得,脱离了传统的石油原料,且具有良好的生物相容性、较高的强度;同时PLA具有生物可降解性,最终的降解产物是二氧化碳和水,不会对环境造成污染,这使之在以环境

2、和发展为主题的今天越来越受到人们的重视,并在日用品以及生物医疗领域中都得到了广泛的应用。然而,PLA虽然具有较高的强度及压缩模量,但是其质硬而韧性较差,缺乏柔性和弹性,极易弯曲变形,抗冲击和抗撕裂能力差,这在一定程度上限制了PLA的使用范围。同样作为一种生物降解材料,PBAT恰好具有良好的拉伸性能和柔韧性,利用PBAT与PLA共混来对其增韧是一种行之有效的方法。前人用熔融共混法制备了(PLA/PBAT)复合材料,实验表明,PBAT能够抑制PLA的结晶,导致材料断面出现孔洞和凹槽,随着PBAT用量的增多,材料断面孔洞的尺寸会有所增加,这会导致复合材料的拉伸强度下降。但是,PBAT的柔性链段能有效

3、改善PLA的脆性,当PBAT质量分数为30%时,PLA/PBAT复合材料的断裂伸长率最大,达到9%,同时,其冲击强度也能够达到5.33kJ/m2。前人在PBAT与PLA共混的过程中发现,随着PBAT用量的增加,PLA/PBAT复合材料中两相的相容性变差,这也是PLA/PBAT共混物力学强度不理想的重要原因。为了进一步提高PLA/PBAT复合材料的性能,扩大其应用范围,前人通常在该共混物中引人增容剂以减小两相界面张力,增大界面结合力,改善共混体系的力学相容性和抗冲击性。德国BASF公司的Joncryl系列扩链剂是一种由甲基丙烯酸缩水甘油酯与其他丙烯酸树脂或苯乙烯合成的共聚物,该扩链剂被研究者和生

4、产企业广泛用于PLA/PBAT共混物的增容中。当0.5份的Joncryl扩链剂加入到PLA/PBAT共混物中时,可以有效增加共混体系的结晶温度,降低结晶度,同时,PLA与PBAT间的界面结合力也显著提高。以PLA/PBAT比例为60/40的共混物为例,在Joncryl扩链剂加入后,其拉伸强度能够提高至30MPa,断裂伸长也提高至700%。与上述类似的是,以法国阿科玛公司生产的LotaderAX8900作为增容剂(用量为3Phr)也能有效增强PLA/PBAT共混物中两相间界面的粘接力,从而提高材料的综合力学性能。江苏大学的相关研究表明乙烯丙烯酸丁酯接枝甲基丙烯酸缩水甘油酯(EBA-GMA)、乙烯

5、丙烯酸甲酯接枝甲基丙烯酸缩水甘油酯(EMA-GMA)和过氧化二苯甲酰(BPO)都能够用作PLA/PBAT复合材料的增容改性。在PLA/PBAT为35:65,增容剂加入量为1Phr的条件下,EBA-GMA、EMA-GMA及BPO分别可以使PLA/PBAT复合材料的非牛顿指数由0.637提升至0.664、0.670及0.722;而EBA-GMA、EMA-GMA及BPO的加入都可以增大复合材料的储能模量,但只有加入BPO 时才能有效提高材料的玻璃化转变温度。当加入的界面相容剂分别为 EBA-GMA、EMA-GMA及BPO时,PLA/PBAT复合材料的断裂伸长率从19.27%依次增加至44.32%、5

6、7.65%及140.13%,但是加入EBA-GMA及EMA-GMA后,材料的拉伸强度略微降低,BPO对于材料力学性能的改善效果最为显著。从机理上看,BPO在熔融挤出共混时由于热分解可产生初级自由基,然后初级自由基引发PLA、PBAT高分子链发生反应生成高分子链自由基,最终可促使两种高分子链自由基重组形成碳碳键连接。与使用BPO类似,同济大学的研究者也曾尝试以六亚甲基二异氰酸酯(HDI)为扩链剂,在催化剂辛酸亚锡作用下,通过熔融扩链反应制备了PLA/PBAT多嵌段共聚物。该产物的断裂伸长率比PLA提高了近百倍,表明扩链反应有效地引入了柔性链段,提高了PLA的韧性。另外,以聚乙二醇(PEG)及聚己

7、内酯(PCL)为代表的聚醇、聚酯类聚合物也可有效提高PLA与PBAT链段的相互作用,使复合材料相容性提高。同济大学研究者的实验表明,2-4Phr的PEG或PCL可以显著改善PLA/PBAT复合材料的拉伸、弯曲、冲击强度和模量。1.2 PBAT/PBS共混与PBAT类似,PBS也具有良好的可生物降解性。相对于其他可生物降解材料,PBS具有价格较低、热变形温度和制品使用温度较高的优点。然而,然而通常PBS的加工温度较低、黏度低、熔体强度差,难以采用吹塑和流延的方式进行加工;另外,PBS是结晶聚合物,其制品往往具有一定的脆性,因此需要对其进行共混改性研究。北京工商大学的研究者通过熔融共混法制备了聚丁

8、二酸丁二醇酯(PBS)/聚己二酸对苯二甲酸丁二酯(PBAT)共混物。通过对不同PBS/PBAT使用比例共混物的性能测试,研究者发现随着PBAT含量的增加,PBS/PBAT共混体系的拉伸强度先升高后降低,断裂伸长率不断提高,冲击强度先降低后提高;当PBAT的质量分数达到20%时,与纯PBS相比,复合材料的断裂伸长率提高了10倍,冲击强度提高了82%,而拉伸强度仅降低6%。天津科技大学的研究者也进行了PBAT增韧改性交联PBS的相关性能研究。其结果表明,PBAT的加入明显降低了PBS/PBAT共混物的熔体质量流动速率,共混物的熔体黏度显著增加,加工性得以改善。同时,PBAT的加入提高了PBS/PB

9、AT共混物的结晶温度,降低了共混物的结晶度,在PBAT质量分数为20时,共混体系出现了PBAT球晶。为了进一步提高PBS/PBAT复合材料的性能,降低生产成本,郑州大学的研究人员,采用熔融共混法制备了麦秸粉/PBS-PBAT复合材料,并且利用60Co-射线对该复合材料进行了辐射改性。研究结果表明,在辐照吸收量适当的情况下,复合材料的拉伸强度、弯曲强度和冲击强度分别能够提高20%、23.5%和6.5%。另外,辐照也能有效降低麦秸粉/PBS-PBAT复合材料的高温分解速度,并将其热变形温度提高10以上。这些性能方面的变化主要由复合材料基体中的亚甲基分子发生了交联反应,进而增强各组分之间的粘结性所导

10、致。1.3 PBAT与其他可降解聚合物共混聚亚丙基碳酸酯(PPC)是一种拥有生物相容性的无毒害的热塑性生物降解高分子材料,其主链上存在醚键,链的柔性较大,玻璃化温度接近于室温。PPC具有较高的拉伸强度和较高的模量,生物相容性好,气体阻隔性好,透气性低。但是由于其为非晶结构,分子链柔性大且相互作用力小,使得PPC的热性能不佳,低温下脆性大。而PPC与PBAT的性能具有鲜明的互补特性,因此将PBAT与PPC共混是制备高性能PBAT复合材料的有效方法之一。长春工业大学的研究者通过挤出共混法和吹膜技术制备了PPC/PBAT共混物薄膜,并且对其物理性质,阻隔性能和生物降解性能进行研究。其结果表明,PPC

11、的加入能够有效降低PBAT的结晶尺寸,改善了薄膜的加工性能。当PPC的含量达到30%时,PBAT/PPC膜的拉伸强度有显著的改善,横纵向的拉伸强度都能达到40MPa;更重要的是,PPC有效地改善了薄膜的阻隔性能,当PPC分数达到30%时,PPC/PBAT薄膜的氧气透过率较PBAT薄膜下降了60%。利用PPC所具有的良好阻隔性,北京工商大学的研究者采用多层共挤吹塑的方法制备了全生物降解高阻透性3层复合薄膜;同时,研究证实当PPC层厚度越大时,氧气透过率越小;牵引速度越大,即分子链取向度越大时,氧气透过率越小。青岛科技大学的研究者还考察了PPC、扩链剂和增塑剂用量对PPC/PBAT复合材料力学性能

12、和流变性能的影响。研究结果表明:在PPC/PBAT共混体系中,随PPC用量的增加,拉伸强度逐渐提高,而断裂伸长率和熔体流动速率不断降低;引入二苯基甲烷二异氰酸酯(MDI)作为扩链剂能够改善PPC与PBAT的相容性,且随着MDI用量的增加,共混材料的拉伸强度和断裂伸长率呈增加趋势,而熔体流动速率则持续降低;另外,当体系中加入增塑剂柠檬酸三丁酯后,随其用量的增加,PPC/PBAT复合材料的拉伸强度降低,而断裂伸长率和熔体流动速率持续提高。在以上研究成果的基础上,该研究团队利用吹膜挤出机组制备了PPC/PBAT共混薄膜。聚羟基丁酸戊酯(PHBV)是由植物、稻草、淀粉等,经微生物发酵,合成并储存在微生

13、物体内的生物材料。PHBV的刚性和气体阻隔性能与聚丙烯相当,并且PHBV可以完全生物降解为二氧化碳和水。但PHBV本身也存在一些缺点,如热稳定性差、结晶速率低、结晶时间长、结晶度低,这也是一直制约其发展的瓶颈。将PHBV与PBAT共混可以改善PHBV的结晶性能,提高材料的加工和应用性能。上海交通大学的研究者以熔融共混的方法制备了PHBV/PBAT复合材料,通过对其测试发现:PBAT质量分数为50%时,复合材料的断裂伸长率为55%,缺口冲击强度为542J/m,分别为改性前PHBV材料的19倍和22.6倍,显著提高了PHBV的韧性。同时,PBAT的加入还能够抑制PHBV的结晶,使PHBV结晶温度降

14、低2040。湖南工业大学的研究者在PHBV/PBAT复合材料的基础上,额外加入了有机蒙脱土和聚磷酸铵基阻燃剂,从而制备得到了PHBV/PBAT复合阻燃材料。其研究结果表明,添加聚磷酸铵基阻燃剂能够有效提高PHBV/PBAT复合材料的氧指数,但是在燃烧的过程中,还有一定的熔滴滴落,而且复合材料的力学性能下降。而有机蒙脱土的质量分数增加到1.0%时,PHBV/PBAT复合材料的拉伸强度、弯曲强度和冲击强度增加明显。当有机蒙脱土和聚磷酸铵基阻燃剂共同使用时,复合阻燃材料的燃烧级别达到了V-0级,而LOI为36%;同时,蒙脱土的使用也缓解了熔滴滴落的现象,降低了熔滴引燃的危害;复合材料的力学性能也因有

15、机蒙脱土的存在而保持良好。2. PBAT与淀粉共混淀粉是一种多羟基的天然高分子碳水化合物,是自然界中仅次于纤维素的第二大产量的生物材料。作为天然可降解高分子材料,淀粉具有品种繁多、来源丰富且价格便宜的特点,因此,淀粉在生物降解材料的研究中倍受关注。从结构上看,淀粉是由单一类型的糖单元组成的高聚糖,由于淀粉已经适应了植物的需要,淀粉颗粒的微观结构通常比合成高分子复杂的多,通常,其邻近分子间多以氢键相互作用形成微品结构的完整颗粒。通过将天然淀粉按不同配比与水和多元醇等增塑剂混合,利用高剪切力和高温破坏淀粉的微晶,使大分子无序线性排列,就可以使原天然淀粉具有热塑性。与目前使用的大多数普通塑料相比,热

16、塑性淀粉(TPS)塑料存在力学强度低、耐水性不好等缺点。用PBAT与TPS共混可以增加淀粉疏水性,扩大其应用范围。TPS/PBAT复合材料制成的薄膜有着良好的力学性能,如:高拉伸强度和断裂伸长率,另外,该材料具有抗静电性,透氧和透水性。同时,TPS/PBAT复合材料材料能被印刷和密封,并且手感很柔软,因此该材料的应用范围十分广泛。长春工业大学的研究者以马来酸酐作为增容剂来提高PBAT与TPS的相容性,通过共混及吹塑制备了TPS/PBAT复合材料薄膜。通过表征,研究者证实了马来酸酐可以接枝于TPS上,并且在TPS与PBAT间形成化学结合,提高了复合材料中两相间的界面作用。根据测试结果,马来酸酐的

17、使用提高了PBAT的玻璃化转变温度,降低了TPS/PBAT的结晶度。同时,TPS/PBAT共混体系复合粘度与纯PBAT相比呈现明显的剪切变稀行为,有益于吹塑成膜,薄膜的力学性能也因马来酸酐的增容作用而改善。与TPS复合后,PBAT的疏水性略有下降,但是并不明显,因此TPS/PBAT复合材料在产品包装和农膜相关领域的应用有很好的前景。华东理工大学的研究者同样利用马来酸酐改性淀粉,进而采用共聚物熔融共混制备了PLA/PBAT/淀粉三元共混物。在其研究过程中发现,熔融共混过程中,PBAT可以与马来酸酐改性的淀粉发生酯交换反应,随着PBAT含量的增加,淀粉粒子尺寸减小,当PBAT含量达到30时,PBA

18、T对淀粉形成包裹结构。此时,材料的韧性明显提高,在淀粉用量为20%的情况下,该复合材料的伸长率可以达到260%。此外,由于材料内部结构的改变,材料的耐溶剂性以及PBAT的结晶性能明显提高。在此研究基础上,该团队进一步以马来酸酐和PBAT为原料采用熔融接枝法合成相容剂聚己二酸一对苯二甲酸丁二酯接枝马来酸酐,并通过熔融挤出共混的方法制备了PBAT/热塑性淀粉共混合金。结果表明,聚己二酸一对苯二甲酸丁二酯接枝马来酸酐提高了PBAT/淀粉二元共混合金的力学性能,当聚己二酸一对苯二甲酸丁二酯接枝马来酸酐质量分数为7%时,材料的拉伸强度能达到9.8MPa,比未添加增容剂的共混材料提高了92.1%,断裂伸长

19、率为64.3%,比未添加增容剂的共混材料提高了83.7%,扫描电子显微镜的结果也表明聚己二酸一对苯二甲酸丁二酯接枝马来酸酐大大改善了PBAT与淀粉间的界面相容性。华南理工大学的研究者通过添加甘油和水等增塑剂对淀粉进行塑化,使其具备热塑性加工的可能性,再将塑化后的淀粉与PBAT在双螺杆挤出机上进行共混,从而制备得到生物可降解塑料。通过对该材料的测试,研究者发现:随着淀粉用量的增加,共混物的综合性能出现了先上升后下降趋势。在淀粉添加量为5-10份时,材料的综合力学性能得到了较好地改善。而淀粉的加入还会使PBAT/淀粉共混物的结晶温度向高温方向偏移,结晶度降低。进一步的研究证实,以乙烯一丙烯酸酯一马

20、来酸酐三元共聚物为代表的增容剂加入可以明显得到改善PBAT与淀粉间的相容性,而当增容剂用量达到7份时,淀粉用量为10也依然可以使复合材料保持比较好的性能。巴西隆德里纳州立大学的研究者用反应挤出法制备了PBAT/淀粉(55/45)的共混物作为吹膜材料,并选用马来酸酐及柠檬酸作为增容剂,用甘油作为增塑剂。结果发现马来酸酐及柠檬酸可以减少薄膜对于水蒸气的透过;相比于马来酸酐,柠檬酸对于PBAT/淀粉复合材料力学性能的提升效果更好,但是柠檬酸的加入会使得薄膜的透明性变差。因此协同使用这两种增容剂可以获得综合性能更好的薄膜材料。中国科学院理化技术研究所的研究者以硅烷偶联剂KH550处理淀粉,然后以不同比

21、例与PBAT共混。其研究结果表明,偶联剂的使用能提高复合材料的拉伸强度,但会大幅降低其断裂伸长率;同时,随着淀粉含量的增加,体系的相容性逐渐变差,而偶联剂的使用则会改善淀粉与PBAT间的浸润性。其他一些国内外的研究者还在使用聚羟基脂肪酸酯和PBAT与热塑性淀粉共混挤出生产薄膜,及热塑性淀粉和PBAT-大豆油体系共混制备薄膜方面进行了研究。研究结果表明,在淀粉与PBAT基体间存在双重作用的增容剂可以有效限制淀粉组份对水分吸收,提高复合材料的疏水性;同时,增容剂也能够起到提高复合材料力学性能的作用。3. PBAT与其他聚合物共混聚碳酸酯(PC)是一种重要的工程塑料,具有较高的冲击强度,耐热性好和模

22、量高等特点。由于它优异的特性,PC被用于汽车,医学等诸多领域。然而,PC的耐化学性是其应用的最大问题。因此,许多研究尝试将PC和其它聚合物混合。PBAT由于具有良好的物理性能,加工性能以及生物降解性能,而被用来与PC共混。日本滋贺大学的研究者开发了PLA/PC/PBAT三元共混物,对其进行测试表明:PBAT和PC以任意比例共混后相容性都较好,采用反应性挤出生产后,共混物的粒径从10微米降到1微米以下,力学性能也有了明显提升。韩国理工大学的研究者也尝试将PC与PBAT共混,研究发现PC/PBAT共混物在260下退火5小时能够引发酯交换反应,进而生成无规共聚物。这些形成的无规共聚物在共混物中发挥了

23、相容剂的作用,使得PC与PBAT的相容性进一步提高,同时还提高了共混物的热稳定性。4. PBAT的填充共混改性聚合物的填充改性是指在聚合物成型加工的过程中加入补强粒子,使聚合物制品拥有更好的性能或更低的成本。将补强材料的刚性、热稳定性和聚合物材料的韧性、可加工性通过共混的方式进行结合,可以实现理想复合材料的制备。近年来,纳米技术快速发展,为聚合物的填充改性提供了新的途径。纳米填料的尺寸小、比表面积大,与聚合物基体界面结合作用强,补强及改性效果显著。PBAT的价格昂贵、机械性能不够理想,这两点是限制其大规模应用的主要因素。同一般的聚合物基体一样,在PBAT中加入纳米尺寸的填料可以克服以上两方面的

24、问题。纳米补强的PBAT复合材料,是一种性能良好、价格低廉的生物降解材料,具有广阔的市场前景。目前,PBAT常用的纳米填料主要有纳米碳酸钙(CaC03)和纳米粘土(clay)。4.1 PBAT与纳米碳酸钙共混改性纳米碳酸韩(CaCO3)具有粒径小、活性高的特点,与聚合物之间具有很强的界面结合力,因此其补强效果良好,被广泛用于橡胶、塑料等通用材料的填充。使PBAT与纳米CaCO3无机粒子共混制备环境友好型可降解复合材料,不仅能在不影响材料降解的基础上,实现材料性能的提升,更能够极大地降低成本,使该复合材料可以大规模用于制造农膜、包装袋及饭盒等,具有很好的理论和实际意义。华南理工大学的研究团队用纳米CaCO3无机粒子填充PBAT,通过对力学性能的研究发现,纳米CaCO3无机粒子含量为10%时,PBAT/纳米CaCO3复合材料的拉伸强度、断裂伸长率和撕裂强度都得到较大提高,甚至在纳米CaCO3无机粒子含量大于20%时,材料依然可以保持较好的性能。中国地质大学的研究团队采用0.5%的KH-560和0.5%的钛酸酯10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论