标准曲线的绘制_第1页
标准曲线的绘制_第2页
标准曲线的绘制_第3页
标准曲线的绘制_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、标准曲线绘制在分析化学实验中,常用标准曲线法进行定量分析,通常情况下的标准工作曲线是一条直线。标准曲线的横坐标(X)表示可以精确测量的变量(如标准溶液的浓度),称为普通变量,纵坐标(Y)表 示仪器的响应值(也称测量值,如吸光度、电极电位等 ),称为随机变量。当 X取值为X1, X2,Xn时, 仪器测得的丫值分另1J为Y1, Y2,Yn。将这些测量点 Xi, Yi描绘在坐标系中,用直尺绘出一条表示X与丫之间的直线线性关系,这就是常用的标准曲线法。用作绘制标准曲线的标准物质,它的含量范围应包 括试祥中被测物质的含量,标准曲线不能任意延长。用作绘制标准曲线的绘图纸的横坐标和纵坐标的标度以及实验点的大

2、小均不能太大或太小,应能近似地反映测量的精度。由于误差不能完全避免,实验点完全落在工作曲线的的情况是极少的,尤其是在误差较大时,实验点比较分散,它们通常并不在同一条直线上,这样凭直觉很难判断怎样才能使所连接的直线对于所有实验点来说误差是最小的,目前较好的方法是对实验点(数据)进行回归分析。研究随机现象中变量之间相关关系的数理统计方法称为回归分析,当自变量只有一个或X与丫在坐标图上的变化轨迹近似一直线时,称为一元线性回归。酚2.6.1 一元线性回归方程的求法确定回归直线的原则是使它与所有测量数据的误差的平方和达到极小值,设回归直线方法为(2 -15)式中a表示截距,b表示斜率假设Xi和Yi (i

3、=1,2,3,n)是变量 X和丫的一组测量数据。对于每一个Xi值,在直线(=)上都有一个确定的% =*必值。但Pi值与X轴上Xi处的实际测定值Yi是不相等的,与Yi之差为:(2 16)上式表示与直线(1 = 131)的偏离程度,即直线的误差程度。如果全部n个测定引起的总偏表不,则偏差平方和 s为精选文档在所有直线中,偏差平方和 s最小的一条直线就是回归直线,即这条直线的斜率b和截距a应使s值达到最小,这种要使所有数据的偏差平方和达到最小的求回归直线法称为最小二乘法。根据数学分析的极值原理,要使s达到最小,对式(2-17)中的a、b分别求偏微分后得到(2 18)(2 19)X,丫是所有变量Xi和

4、Yi的平均值。由于计算离均差较麻烦,可将式 (2 18)变换为(2 20)n是测量的次数,也就是坐标图中实验点的数目。当丫随X的增加而增加时,b 0,反之b|r|0 时(绝大多数下的情况),X与丫之间存在着一定的线,性相关关系。当 r 0时,b 0 , Y值F X值增大而增大,此时称 丫与X属正相关关系,如图 2 7中(b)所示。当r 0时,b 0 , Y值Fit X 值增大而减小,此时称 丫与X是负相关关系,如图2 7中(e)所示。再从r的绝对值看,当r的绝对值越趋近于1时,实验点就越靠近回归直线,丫与X线性关系越密切。3 .当r=0时,b=0,即回归直线平行于 X轴,如图2 7中(c)及(

5、d)所示,说明丫的变化与X无关, 止匕时X与丫毫无线性关系。因此图 2 7中(c)及(d)的回归直线是没有意义的。当r值大于约定的显著性水准下临界值时,丫与X两组数据之间才是显著性相关的,所得的回归方程才有实际意义,否则回归方程无实际意义。临界值与显著性水准及实验点数有关。表27列出了相关系数检验的临界值。精选文档通过相关系数计算,如r计算r表,则表示丫与X两个变量之间存在着线性关系;如 r计算r表,则说明丫与X之间不存在线性关系,所配回归方程就没有实际意义。表2 - 7相关系数检验临界值宾脸点数显著性水淮实 验点 数显著性水准双边检验单边检躺取边检验单边检嗑0J050.100.050.100

6、.050.100.030.104口 9500.9 900 9000 9S0L50 5140.0410441口现50.8780 9590 8050 934160.70(5230.4260_57460.S110.9170 7290 8B2L70 4e20 6060.4120J5J870 7540.875口附0.33318口,峨0.5900 4000.M38Q.T070.8340621口侬L90 42口加0 38909Q.6660 7980 5320.750200.444口 .561口现0J16100.6320.7650 5490JI52503960.5060360.45111口如20.7350.5210.635300 3630.464OJOT0.42313口口而0.70

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论